Darboux integrability of generalized Yang-Mills Hamiltonian system

被引:12
|
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Hamiltonian systems; weight-homogenous differential systems; polynomial integrability; PAINLEVE PROPERTY; INTEGRALS; INVARIANT; EQUATIONS; MOTION;
D O I
10.1080/14029251.2016.1175820
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the generalized Yang-Mills system with Hamiltonian H = (p(1)(2) + p(2)(2))/2 + V(q(1),q(2)) where V = 1/2(aq(1)(2) + bq(2)(2)) + (cq(1)(4) + 2eq(1)(2)q(2)(2) + dq(2)(4))/4 is not completely integrable with Darboux first integrals.
引用
收藏
页码:234 / 242
页数:9
相关论文
共 50 条
  • [1] Darboux integrability of generalized Yang—Mills Hamiltonian system
    Jaume Llibre
    Claudia Valls
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 234 - 242
  • [2] INTEGRABILITY OF THE YANG-MILLS HAMILTONIAN SYSTEM
    KASPERCZUK, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 58 (04): : 387 - 391
  • [3] Periodic orbits and nonintegrability of generalized classical Yang-Mills Hamiltonian systems
    Jimenez-Lara, Lidia
    Llibre, Jaume
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (03)
  • [4] Hamiltonian flow in Coulomb gauge Yang-Mills theory
    Leder, Markus
    Pawlowski, Jan M.
    Reinhardt, Hugo
    Weber, Axel
    PHYSICAL REVIEW D, 2011, 83 (02):
  • [5] Stochastic quantization of Yang-Mills
    Chevyrev, Ilya
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
  • [6] Generalization of the Yang-Mills theory
    Savvidy, G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (01):
  • [7] On the holography of free Yang-Mills
    Bae, J. B.
    Joung, E.
    Lal, S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [8] Generalized instantons in N=4 super Yang-Mills theory and spinorial geometry
    Detournay, Stephane
    Klemm, Dietmar
    Pedroli, Carlo
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [9] Elliptic Yang-Mills flow theory
    Janner, Remi
    Swoboda, Jan
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (8-9) : 935 - 967
  • [10] Superstring limit of Yang-Mills theories
    Lechtenfeld, Olaf
    Popov, Alexander D.
    PHYSICS LETTERS B, 2016, 762 : 309 - 314