A Patient-Adaptive Profiling Scheme for ECG Beat Classification

被引:58
作者
Faezipour, Miad [1 ]
Saeed, Adnan [1 ]
Bulusu, Suma Chandrika [1 ]
Nourani, Mehrdad [1 ]
Minn, Hlaing [1 ]
Tamil, Lakshman [1 ]
机构
[1] Univ Texas Dallas, Qual Life Technol Lab, Richardson, TX 75083 USA
来源
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE | 2010年 / 14卷 / 05期
关键词
Beat classification; cardiac profile; electrocardiogram (ECG) signal processing; hash functions; packet processing; repetition; wavelet;
D O I
10.1109/TITB.2010.2055575
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent trends in clinical and telemedicine applications highly demand automation in electrocardiogram (ECG) signal processing and heart beat classification. A patient-adaptive cardiac profiling scheme using repetition-detection concept is proposed in this paper. We first employ an efficient wavelet-based beat-detection mechanism to extract precise fiducial ECG points. Then, we implement a novel local ECG beat classifier to profile each patient's normal cardiac behavior. ECG morphologies vary from person to person and even for each person, it can vary over time depending on the person's physical condition and/or environment. Having such profile is essential for various diagnosis (e.g., arrhythmia) purposes. One application of such profiling scheme is to automatically raise an early warning flag for the abnormal cardiac behavior of any individual. Our extensive experimental results on the MIT-BIH arrhythmia database show that our technique can detect the beats with 99.59% accuracy and can identify abnormalities with a high classification accuracy of 97.42%.
引用
收藏
页码:1153 / 1165
页数:13
相关论文
共 36 条
[1]   Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm [J].
Acir, N .
NEURAL COMPUTING & APPLICATIONS, 2005, 14 (04) :299-309
[2]   ECG noise filtering using wavelets with soft-thresholding methods [J].
Agante, PM ;
de Sá, JPM .
COMPUTERS IN CARDIOLOGY 1999, VOL 26, 1999, 26 :535-538
[3]  
[Anonymous], 2010, MIT BIH ARRHYTHMIA D
[4]  
Besrour R., 2008, 3rd International Conference on Information and Communication Technologies: From Theory to Applications, ICTTA 2008, P1
[5]   Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification [J].
Christov, Ivaylo ;
Gomez-Herrero, German ;
Krasteva, Vessela ;
Jekova, Irena ;
Gotchev, Atanas ;
Egiazarian, Karen .
MEDICAL ENGINEERING & PHYSICS, 2006, 28 (09) :876-887
[6]   FPGA-oriented HW/SW implementation of ECG beat detection and classification algorithm [J].
Cvikl, Matej ;
Zemva, Andrej .
DIGITAL SIGNAL PROCESSING, 2010, 20 (01) :238-248
[7]   Developments in ECG acquisition, preprocessing, parameter measurement, and recording [J].
Daskalov, IK ;
Dotsinsky, IA ;
Christov, II .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1998, 17 (02) :50-58
[8]   Automatic classification of heartbeats using ECG morphology and heartbeat interval features [J].
de Chazal, P ;
O'Dwyer, M ;
Reilly, RB .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (07) :1196-1206
[9]  
Dinh HAN, 2001, P ANN INT IEEE EMBS, V23, P1883, DOI [10.1109/IEMBS.2001.1020593, 10.1007/BF03178366]
[10]   Ventricular beat detection in single channel electrocardiograms [J].
Dotsinsky, Ivan A. ;
Stoyanov, Todor V. .
BIOMEDICAL ENGINEERING ONLINE, 2004, 3 (1)