On the lifted Zetterberg code

被引:11
作者
Alahmadi, Adel [1 ]
Alhazmi, Hussain [1 ]
Helleseth, Tor [2 ]
Hijazi, Rola [1 ]
Muthana, Najat [1 ]
Sole, Patrick [1 ,3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[2] Univ Bergen, Dept Informat, Selmer Ctr, Bergen, Norway
[3] Telecom ParisTech, LTCI, Paris, France
关键词
Zetterberg code; Cyclic codes; Codes over Z(4);
D O I
10.1007/s10623-015-0118-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The even-weight subcode of a binary Zetterberg code is a cyclic code with generator polynomial , where p(x) is the minimum polynomial over GF(2) of an element of order in and m is even. This even binary code has parameters . The quaternary code obtained by lifting the code to the alphabet is shown to have parameters , where denotes the minimum Lee distance. The image of the Gray map of the lifted code is a binary code with parameters , where denotes the minimum Hamming weight and . For these parameters equal the parameters of the best known binary linear code for this length and dimension. Furthermore, a simple algebraic decoding algorithm is presented for these -codes for all even m. This appears to be the first infinite family of -codes of length with having an algebraic decoding algorithm.
引用
收藏
页码:561 / 576
页数:16
相关论文
共 11 条
[1]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[2]  
[Anonymous], 2004, INTRO CODING THEORY
[3]  
Bierbrauer J., 1997, SPRINGER LNS, V127, P221
[6]   ALGEBRAIC DECODING OF THE ZETTERBERG CODES [J].
DODUNEKOV, SM ;
NILSSON, JEM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (05) :1570-1573
[7]  
HAMMONS R, 1994, IEEE T INFORM THEORY, V40, P301
[8]   The algebraic decoding of the Z(4)-linear Goethals code [J].
Helleseth, T ;
Kumar, PV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :2040-2048
[9]   On maximal arcs in projective Hjelmslev planes over chain rings of even characteristic [J].
Honold, T ;
Landjev, I .
FINITE FIELDS AND THEIR APPLICATIONS, 2005, 11 (02) :292-304
[10]  
Nechaev A.A., 1991, Discrete Mathematics and Applications, V1, P365, DOI [DOI 10.1515/DMA.1991.1.4.365, 10.1515/dma.1991.1.4.365]