3D architectures with Co2(OH)2CO3 nanowires wrapped by reduced graphene oxide as superior rate anode materials for Li-ion batteries

被引:29
|
作者
Dong, Yutao [1 ]
Ma, Yuhang [1 ]
Li, Yongsheng [1 ]
Niu, Meiting [1 ]
Yang, Jie [1 ]
Song, Xuechao [1 ]
Li, Dan [1 ]
Liu, Yushan [1 ]
Zhang, Jianmin [1 ]
机构
[1] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
RATIONAL DESIGN; RATE CAPABILITY; THIN-FILM; LITHIUM; PERFORMANCE; CONVERSION; NANOSHEETS; ELECTROLYTE; SPHERES; CARBON;
D O I
10.1039/c9nr07163f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Open porous 3D architectures with Co-2(OH)(2)CO3 nanowires wrapped by highly conductive reduced graphene oxide films are designed and exploited for the first time as anodes for lithium ion batteries; the materials were fabricated via one-step hydrothermal synthesis and self-assembly based on the electrostatic interaction and coordination principle and delivered superior rate performance (1510 and 445 mA h g(-1) at 0.1 and 20 A g(-1), respectively) and long cycle stability (5000th reversible capacity of 550 mA h g(-1) at 10 A g(-1)). This extremely encouraging result is attributed to the open porous 3D networks and ultrafine diameters of the nanowires, which achieved better electrical contact between the active materials and shortened the ion/electron transport paths; this highlights the synergistic effect of combining the Co-2(OH)(2)CO3 nanowires and rGO films. Especially, the hydroxide (LiOH) can provide a good skeleton structure, ionic conductivity and fast kinetics. Additionally, the lithium storage mechanism of the Co-2(OH)(2)CO3/rGO electrode has been elaborately studied. This work not only enlightens the design of open porous 3D architecture hybrid anode materials of transition-metal hydroxyl carbonates with great potential prospective applications for high energy lithium storage, but also provides a new strategy to construct graphene-based composite materials via the coordination principle and molecular self-assembly theory to achieve more functional materials.
引用
收藏
页码:21180 / 21187
页数:8
相关论文
共 50 条
  • [1] 3D graphene-based anode materials for Li-ion batteries
    Wang, Huan
    Li, Xu
    Baker-Fales, Montgomery
    Amama, Placidus B.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2016, 13 : 124 - 132
  • [2] High-rate and long-life of Li-ion batteries using reduced graphene oxide/Co3O4 as anode materials
    He, Junkai
    Liu, Ying
    Meng, Yongtao
    Sun, Xiangcheng
    Biswas, Sourav
    Shen, Min
    Luo, Zhu
    Miao, Ran
    Zhang, Lichun
    Mustain, William E.
    Suib, Steven L.
    RSC ADVANCES, 2016, 6 (29): : 24320 - 24330
  • [3] Enhancing Electrochemical Performance of Co(OH)2 Anode Materials by Introducing Graphene for Next-Generation Li-ion Batteries
    Kim, Hyunwoo
    Kim, Dong In
    Yoon, Won-Sub
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (03) : 398 - 406
  • [4] 3D Interconnected MoO2 Nanocrystals on Nickel Foam as Binder-free Anode for Li-ion Batteries
    Qi Yanyuan
    Zhou Bo
    Zheng Shenbo
    Yang Xue
    Jin Wei
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2018, 33 (06): : 1315 - 1322
  • [5] Surfactant-assisted synthesis of a Co3O4/reduced graphene oxide composite as a superior anode material for Li-ion batteries
    Pan, Lanying
    Zhao, Hongbin
    Shen, Weichao
    Dong, Xiaowen
    Xu, Jiaqiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (24) : 7159 - 7166
  • [6] Reduced graphene oxide from dead Li-ion batteries with β-Co(OH)2 as a potential electrode for enhanced charge storage capabilities
    Viswanathan, Aranganathan
    Aravindan, Vanchiappan
    RSC SUSTAINABILITY, 2024, 2 (08): : 2199 - 2212
  • [7] In situ synthesis rodlike MnO2/reduced graphene oxide composite as anode materials for Li-ion batteries
    Li, Zongyang
    Liu, Hongdong
    Ruan, Haibo
    Hu, Rong
    Su, Yongyao
    Hu, Zhongli
    Huang, Jiamu
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (23) : 18099 - 18105
  • [8] Nanostructured 3D Electrode Architectures for High-Rate Li-Ion Batteries
    Haag, Jacob M.
    Pattanaik, Gyanaranjan
    Durstock, Michael F.
    ADVANCED MATERIALS, 2013, 25 (23) : 3238 - 3243
  • [9] Reduced Graphene Oxide-Wrapped Novel CoIn2S4 Spinel Composite Anode Materials for Li-ion Batteries
    Lee, Ting-Yu
    Liu, Wei-Ren
    NANOMATERIALS, 2022, 12 (24)
  • [10] Reduced graphene oxide anchored with δ-MnO2 nanoscrolls as anode materials for enhanced Li-ion storage
    Liu, Hongdong
    Hu, Zhongli
    Tian, Liangliang
    Su, Yongyao
    Ruan, Haibo
    Zhang, Lei
    Hu, Rong
    CERAMICS INTERNATIONAL, 2016, 42 (12) : 13519 - 13524