MULTIPLICATIVE ORDER OF GAUSS PERIODS

被引:22
|
作者
Ahmadi, Omran [1 ]
Shparlinski, Igor E. [2 ]
Voloch, Jose Felipe [3 ]
机构
[1] Univ Coll Dublin, Claude Shannon Inst, Dublin 4, Ireland
[2] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Finite fields; multiplicative order; Gauss period; partition; FINITE-FIELD ELEMENTS; NORMAL BASES;
D O I
10.1142/S1793042110003290
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a lower bound on the multiplicative order of Gauss periods which generate normal bases over finite fields. This bound improves the previous bound of von zur Gathen and Shparlinski.
引用
收藏
页码:877 / 882
页数:6
相关论文
共 50 条
  • [1] ORDER OF GAUSS PERIODS IN LARGE CHARACTERISTIC
    Chang, Mei-Chu
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (02): : 621 - 628
  • [2] Gauss periods: Orders and cryptographical applications
    Gao, SH
    Von zur Gathen, J
    Panario, D
    MATHEMATICS OF COMPUTATION, 1998, 67 (221) : 343 - 352
  • [3] Orders of Gauss periods in finite fields
    von zur Gathen, J
    Shparlinski, I
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1998, 9 (01) : 15 - 24
  • [4] Gauss periods and codebooks from generalized cyclotomic sets of order four
    Liqin Hu
    Qin Yue
    Designs, Codes and Cryptography, 2013, 69 : 233 - 246
  • [5] Gauss periods and codebooks from generalized cyclotomic sets of order four
    Hu, Liqin
    Yue, Qin
    DESIGNS CODES AND CRYPTOGRAPHY, 2013, 69 (02) : 233 - 246
  • [6] Abelian groups, Gauss periods, and normal bases
    Gao, SH
    FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (01) : 149 - 164
  • [7] Gauss periods as constructions of low complexity normal bases
    Christopoulou, M.
    Garefalakis, T.
    Panario, D.
    Thomson, D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (01) : 43 - 62
  • [8] Gauss periods as constructions of low complexity normal bases
    M. Christopoulou
    T. Garefalakis
    D. Panario
    D. Thomson
    Designs, Codes and Cryptography, 2012, 62 : 43 - 62
  • [9] Complexities of normal bases constructed from Gauss periods
    Xiang-Dong Hou
    Designs, Codes and Cryptography, 2018, 86 : 893 - 905
  • [10] Complexities of normal bases constructed from Gauss periods
    Hou, Xiang-Dong
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (04) : 893 - 905