Quantum Gauge Symmetry of Reducible Gauge Theory

被引:1
作者
Dwivedi, Manoj Kumar [1 ]
机构
[1] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India
关键词
Quantum gauge symmetry; Gauge theory; BRST symmetry; BATALIN-VILKOVISKY FORMALISM; BRST SYMMETRY; COVARIANT QUANTIZATION; SPECIAL RELATIVITY; MASS GENERATION; GRAVITY; FIELD; TRANSFORMATION; FORMULATION; BREAKING;
D O I
10.1007/s10773-017-3302-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the gaugeon formalism of the Kalb-Ramond field theory, a reducible gauge theory, which discusses the quantum gauge freedom. In gaugeon formalism, theory admits quantum gauge symmetry which leaves the action form-invariant. The BRST symmetric gaugeon formalism is also studied which introduces the gaugeon ghost fields and gaugeon ghosts of ghosts fields. To replace the Yokoyama subsidiary conditions by a single Kugo-Ojima type condition the virtue of BRST symmetry is utilized. Under generalized BRST transformations, we show that the gaugeon fields appear naturally in the reducible gauge theory.
引用
收藏
页码:1625 / 1634
页数:10
相关论文
共 50 条
[41]   Torsion in gauge theory [J].
Nieh, H. T. .
PHYSICAL REVIEW D, 2018, 97 (04)
[42]   Master functional and proper formalism for quantum gauge field theory [J].
Damiano Anselmi .
The European Physical Journal C, 2013, 73
[43]   From quantum electrodynamics to a geometric gauge theory of classical electromagnetism [J].
Marsh, Adam .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (10)
[44]   Unparticles in gauge theory [J].
G. A. Kozlov .
Physics of Particles and Nuclei, 2010, 41 :954-956
[45]   Gauge fixing invariance and anti-BRST symmetry [J].
Varshovi, Amir Abbass .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (11)
[46]   Unparticles in gauge theory [J].
Kozlov, G. A. .
PHYSICS OF PARTICLES AND NUCLEI, 2010, 41 (06) :954-956
[47]   Master functional and proper formalism for quantum gauge field theory [J].
Anselmi, Damiano .
EUROPEAN PHYSICAL JOURNAL C, 2013, 73 (03) :1-18
[48]   Gravitational Gauge Theory and the Existence of Time [J].
Wheeler, James T. .
6TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES (QTS6), 2013, 462
[49]   A simplicial gauge theory [J].
Christiansen, Snorre H. ;
Halvorsen, Tore G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (03)
[50]   On the BV quantization of gauge gravitation theory [J].
Bashkirov, D ;
Sardanashvily, G .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2005, 2 (02) :203-226