Nanoparticle-Induced Charge Redistribution of the Air-Water Interface

被引:25
|
作者
Redondo, Amaia Beloqui [1 ]
Jordan, Inga [2 ]
Ziazadeh, Ibrahim [3 ]
Kleibert, Armin [4 ]
Giorgi, Javier B. [5 ]
Woerner, Hans Jakob [2 ]
May, Sylvio [6 ]
Abbas, Zareen [3 ]
Brown, Matthew A. [1 ,7 ]
机构
[1] ETH, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
[2] ETH, Phys Chem Lab, CH-8093 Zurich, Switzerland
[3] Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden
[4] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[5] Univ Ottawa, Dept Chem, Ctr Catalysis Res & Innovat, Ottawa, ON K1N 6N5, Canada
[6] N Dakota State Univ, Dept Phys, Fargo, ND 58108 USA
[7] ETH, Dept Mat, Lab Surface Sci & Technol, CH-8093 Zurich, Switzerland
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2015年 / 119卷 / 05期
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
RAY PHOTOELECTRON-SPECTROSCOPY; IN-SITU; SILICA NANOPARTICLES; AQUEOUS-SOLUTIONS; SPATIAL-DISTRIBUTION; AIR/WATER INTERFACE; MOLECULAR-DYNAMICS; SURFACE-TENSION; SALT-SOLUTIONS; POTENTIALS;
D O I
10.1021/jp511915b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The airwater interface is believed to carry a negative electrostatic potential that is nontrivial to invert through pH, electrolyte, or electrolyte strength. Here, through a combined experimental and theoretical study, we show that the close approach of a negatively charged nanoparticle induces a charge redistribution of the airwater interface. Using different electrolytes to control the interfacial potential of the nanoparticles, X-ray photoelectron spectroscopy (XPS) results establish that nanoparticles with a more negative zeta potential adsorb closer to the airwater interface than do the same particles with a less negative zeta potential. The short-ranged attractive force between two (nominally) negative surfaces is caused by charge redistribution under the strong electric field of the nanoparticle that locally inverts the charge density of the airwater interface from negative to positive. The nature of the nanoparticles counterions modulates the attractive interaction, which thus could be used to control reactivity, stability, and nanoparticle self-assembly at airwater interfaces.
引用
收藏
页码:2661 / 2668
页数:8
相关论文
共 50 条
  • [21] Chiral recognition at the air-water interface
    Ariga, Katsuhiko
    Michinobu, Tsuyoshi
    Nakanishi, Takashi
    Hill, Jonathan P.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2008, 13 (1-2) : 23 - 30
  • [22] Crystallization of a polyphosphoester at the air-water interface
    Hasan, Nazmul
    Schwieger, Christian
    Tee, Hisaschi T.
    Wurm, Frederik R.
    Busse, Karsten
    Kressler, Joerg
    EUROPEAN POLYMER JOURNAL, 2018, 101 : 350 - 357
  • [23] Oppositely charged surfactants and nanoparticles at the air-water interface: Influence of surfactant to nanoparticle ratio
    Eftekhari, Milad
    Schwarzenberger, Karin
    Karakashev, Stoyan I.
    Grozev, Nikolay A.
    Eckert, Kerstin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 653 : 1388 - 1401
  • [24] The Adsorption Behavior of Ionic Surfactants and Their Mixtures with Nonionic Polymers and with Polyelectrolytes of Opposite Charge at the Air-Water Interface
    Bahramian, Alireza
    Thomas, Robert K.
    Penfold, Jeffrey
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (10): : 2769 - 2783
  • [25] Double-Layer Distribution of Hydronium and Hydroxide Ions in the Air-Water Interface
    Zhang, Pengchao
    Feng, Muye
    Xu, Xuefei
    ACS PHYSICAL CHEMISTRY AU, 2024, 4 (04): : 336 - 346
  • [26] Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface
    Hua, Wei
    Verreault, Dominique
    Allen, Heather C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (43) : 13920 - 13926
  • [27] Ions at the Air-Water Interface: An End to a Hundred-Year-Old Mystery?
    Levin, Yan
    dos Santos, Alexandre P.
    Diehl, Alexandre
    PHYSICAL REVIEW LETTERS, 2009, 103 (25)
  • [28] Surface rheological properties of hydroxypropyl cellulose at air-water interface
    Mezdour, S.
    Cuvelier, G.
    Cash, M. J.
    Michon, C.
    FOOD HYDROCOLLOIDS, 2007, 21 (5-6) : 776 - 781
  • [29] Interactions of polysaccharides with β-lactoglobulin adsorbed films at the air-water interface
    Baeza, R
    Sanchez, CC
    Pilosof, AMR
    Patino, JMR
    FOOD HYDROCOLLOIDS, 2005, 19 (02) : 239 - 248
  • [30] Interactions of polysaccharides with β-lactoglobulin spread monolayers at the air-water interface
    Baeza, R
    Sanchez, CC
    Pilosof, AMR
    Patino, JMR
    FOOD HYDROCOLLOIDS, 2004, 18 (06) : 959 - 966