Nanoparticle-Induced Charge Redistribution of the Air-Water Interface

被引:25
|
作者
Redondo, Amaia Beloqui [1 ]
Jordan, Inga [2 ]
Ziazadeh, Ibrahim [3 ]
Kleibert, Armin [4 ]
Giorgi, Javier B. [5 ]
Woerner, Hans Jakob [2 ]
May, Sylvio [6 ]
Abbas, Zareen [3 ]
Brown, Matthew A. [1 ,7 ]
机构
[1] ETH, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
[2] ETH, Phys Chem Lab, CH-8093 Zurich, Switzerland
[3] Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden
[4] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[5] Univ Ottawa, Dept Chem, Ctr Catalysis Res & Innovat, Ottawa, ON K1N 6N5, Canada
[6] N Dakota State Univ, Dept Phys, Fargo, ND 58108 USA
[7] ETH, Dept Mat, Lab Surface Sci & Technol, CH-8093 Zurich, Switzerland
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2015年 / 119卷 / 05期
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
RAY PHOTOELECTRON-SPECTROSCOPY; IN-SITU; SILICA NANOPARTICLES; AQUEOUS-SOLUTIONS; SPATIAL-DISTRIBUTION; AIR/WATER INTERFACE; MOLECULAR-DYNAMICS; SURFACE-TENSION; SALT-SOLUTIONS; POTENTIALS;
D O I
10.1021/jp511915b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The airwater interface is believed to carry a negative electrostatic potential that is nontrivial to invert through pH, electrolyte, or electrolyte strength. Here, through a combined experimental and theoretical study, we show that the close approach of a negatively charged nanoparticle induces a charge redistribution of the airwater interface. Using different electrolytes to control the interfacial potential of the nanoparticles, X-ray photoelectron spectroscopy (XPS) results establish that nanoparticles with a more negative zeta potential adsorb closer to the airwater interface than do the same particles with a less negative zeta potential. The short-ranged attractive force between two (nominally) negative surfaces is caused by charge redistribution under the strong electric field of the nanoparticle that locally inverts the charge density of the airwater interface from negative to positive. The nature of the nanoparticles counterions modulates the attractive interaction, which thus could be used to control reactivity, stability, and nanoparticle self-assembly at airwater interfaces.
引用
收藏
页码:2661 / 2668
页数:8
相关论文
共 50 条
  • [1] How intermolecular charge transfer influences the air-water interface
    Wick, Collin D.
    Lee, Alexis J.
    Rick, Steven W.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (15):
  • [2] Orientation-Induced Adsorption of Hydrated Protons at the Air-Water Interface
    Mamatkulov, Shavkat I.
    Allolio, Christoph
    Netz, Roland R.
    Bonthuis, Douwe Jan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) : 15846 - 15851
  • [3] Protein Adsorption at the Air-Water Interface by a Charge Sensing Interferometric Technique
    Brocca, Paola
    Saponaro, Andrea
    Introini, Bianca
    Rondelli, Valeria
    Pannuzzo, Martina
    Raciti, Domenica
    Corti, Mario
    Raudino, Antonio
    LANGMUIR, 2019, 35 (49) : 16087 - 16100
  • [4] Electrophoresis of a Charge-Regulated Sphere Normal to an Air-Water Interface
    Tsai, Peter
    Fang, Hsuan
    Lee, Eric
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (20): : 6484 - 6494
  • [5] Flow induced patterning at the air-water interface
    Miraghaie, R
    Lopez, JM
    Hirsa, AH
    PHYSICS OF FLUIDS, 2003, 15 (06) : L45 - L48
  • [6] Reactivity of Atmospherically Relevant Small Radicals at the Air-Water Interface
    Martins-Costa, Marilia T. C.
    Anglada, Josep M.
    Francisco, Joseph S.
    Ruiz-Lopez, Manuel F.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (22) : 5413 - 5417
  • [7] Ionization state of L-Phenylalanine at the Air-Water Interface
    Griffith, Elizabeth C.
    Vaida, Veronica
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (02) : 710 - 716
  • [8] Hofmeister Anion Effects on Protein Adsorption at an Air-Water Interface
    Yano, Yohko F.
    Kobayashi, Yuki
    Ina, Toshiaki
    Nitta, Kiyofumi
    Uruga, Tomoya
    LANGMUIR, 2016, 32 (38) : 9892 - 9898
  • [9] Effect of charge on protein preferred orientation at the air-water interface in cryo-electron microscopy
    Li, Bufan
    Zhu, Dongjie
    Shi, Huigang
    Zhang, Xinzheng
    JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (04)
  • [10] Coalescence of air bubbles at air-water interface
    Ghosh, P
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2004, 82 (A7): : 849 - 854