ADAPTIVE SPLIT-MERGE ALGORITHM FOR GAUSSIAN MIXTURE MODELS TO SOLVE THE KOLMOGOROV EQUATION

被引:0
作者
Vishwajeet, Kumar [1 ]
Singla, Puneet [1 ]
机构
[1] Univ Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
来源
ASTRODYNAMICS 2013, PTS I-III | 2014年 / 150卷
关键词
POLYNOMIAL-CHAOS; STATE;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Number of components in a Gaussian mixture model plays an important role in its accuracy and computational complexity. New adaptive split-merge technique is introduced in this paper based on the minimization of error in the solution of Fokker Planck Kolmogorov Equation. We also discuss the effect of splitting/merging of few components on the weights of other components. A single Gaussian component at initial time is split over time to account for the change in the probability density function of the states of the system.
引用
收藏
页码:977 / 988
页数:12
相关论文
共 20 条
  • [1] Abramov RV, 2010, COMMUN MATH SCI, V8, P377
  • [2] NONLINEAR BAYESIAN ESTIMATION USING GAUSSIAN SUM APPROXIMATIONS
    ALSPACH, DL
    SORENSON, HW
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (04) : 439 - &
  • [3] [Anonymous], 2007, Fundamentals of Astrodynamics and Applications
  • [4] [Anonymous], 1989, Methods of solution and applications
  • [5] Clark E., 1999, AC SPEECH SIGN PROC, V6
  • [6] Progressive bayes: A new framework for nonlinear state estimation
    Hanebeck, UD
    Briechle, K
    Rauh, A
    [J]. MULTISENSOR, MULTISOURCE INFORMATION FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS 2003, 2003, 5099 : 256 - 267
  • [7] Jazwinski A.H., 1979, STOCHASTIC PROCESSES
  • [8] Julier SJ, 2002, P AMER CONTR CONF, V1-6, P887, DOI 10.1109/ACC.2002.1023128
  • [9] Unscented filtering and nonlinear estimation
    Julier, SJ
    Uhlmann, JK
    [J]. PROCEEDINGS OF THE IEEE, 2004, 92 (03) : 401 - 422
  • [10] Kalman R.E., 1960, NEW APPROACH LINEAR, DOI [DOI 10.1115/1.3662552, 10.1115/1.3662552]