UNIVERSALITY FOR THE PINNING MODEL IN THE WEAK COUPLING REGIME

被引:7
|
作者
Caravenna, Francesco [1 ]
Toninelli, Fabio Lucid [2 ,3 ,4 ]
Torri, Niccolo [2 ,4 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
[2] Univ Lyon, Inst Camille Jordan, Villeurbanne, France
[3] CNRS, Paris, France
[4] Univ Claude Bernard Lyon 1, Inst Camille Jordan, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
Scaling limit; disorder relevance; weak disorder; pinning model; random polymer; universality; free energy; critical curve; coarse-graining; DISORDER; POLYMER; RELEVANCE; THEOREMS; LIMIT;
D O I
10.1214/16-AOP1109
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider disordered pinning models, when the return time distribution of the underlying renewal process has a polynomial tail with exponent alpha is an element of (1/2, 1). This corresponds to a regime where disorder is known to be relevant, that is, to change the critical exponent of the localization transition and to induce a nontrivial shift of the critical point. We show that the free energy and critical curve have an explicit universal asymptotic behavior in the weak coupling regime, depending only on the tail of the return time distribution and not on finer details of the models. This is obtained comparing the partition functions with corresponding continuum quantities, through coarse-graining techniques.
引用
收藏
页码:2154 / 2209
页数:56
相关论文
共 50 条
  • [1] The Critical Curves of the Random Pinning and Copolymer Models at Weak Coupling
    Berger, Quentin
    Caravenna, Francesco
    Poisat, Julien
    Sun, Rongfeng
    Zygouras, Nikos
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (02) : 507 - 530
  • [2] The continuum disordered pinning model
    Caravenna, Francesco
    Sun, Rongfeng
    Zygouras, Nikos
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (1-2) : 17 - 59
  • [3] The continuum disordered pinning model
    Francesco Caravenna
    Rongfeng Sun
    Nikos Zygouras
    Probability Theory and Related Fields, 2016, 164 : 17 - 59
  • [4] Copolymer at selective interfaces and pinning potentials: Weak coupling limits
    Petrelis, Nicolas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01): : 175 - 200
  • [5] The Critical Curves of the Random Pinning and Copolymer Models at Weak Coupling
    Quentin Berger
    Francesco Caravenna
    Julien Poisat
    Rongfeng Sun
    Nikos Zygouras
    Communications in Mathematical Physics, 2014, 326 : 507 - 530
  • [6] PATH PROPERTIES OF THE DISORDERED PINNING MODEL IN THE DELOCALIZED REGIME
    Alexander, Kenneth S.
    Zygouras, Nikos
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (02) : 599 - 615
  • [7] Random pinning model with finite range correlations: Disorder relevant regime
    Poisat, Julien
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (10) : 3560 - 3579
  • [8] Localization of a Gaussian membrane model with weak pinning potentials
    Sakagawa, Hironobu
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 1123 - 1140
  • [9] THE WEAK COUPLING LIMIT OF DISORDERED COPOLYMER MODELS
    Caravenna, Francesco
    Giacomin, Giambattista
    ANNALS OF PROBABILITY, 2010, 38 (06) : 2322 - 2378
  • [10] Hierarchical pinning model in correlated random environment
    Berger, Quentin
    Toninelli, Fabio Lucio
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (03): : 781 - 816