Combining Spatial and Temporal Properties for Improvements in Data Reduction

被引:1
|
作者
Fulp, Megan Hickman [1 ]
Biswas, Ayan [2 ]
Calhoun, Jon C. [1 ]
机构
[1] Clemson Univ, Holcombe Dept Elect & Comp Engn, Clemson, SC 29634 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
基金
美国国家科学基金会;
关键词
Data Reduction; Data Sampling; Importance Sampling; Feature Preservation; LOSSY COMPRESSION; TIME; VISUALIZATION;
D O I
10.1109/BigData50022.2020.9378457
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to I/O bandwidth limitations, intelligent in situ data reduction methods are needed to enable post-hoc workflows. Current state-of-the-art sampling methods save data points if they deem them spatially or temporally important. By analyzing the properties of the data values at each time-step, two consecutive steps may be very similar. This research follows the notion that if neighboring time-steps are very similar, samples from both are unnecessary, which leaves storage for adding more useful samples. Here, we present an investigation of the combination of spatial and temporal sampling to drastically reduce data size without the loss of valuable information. We demonstrate that, by reusing samples, our reconstructed data set reduces the overall data size while achieving a higher post-reconstruction quality over other reduction methods.
引用
收藏
页码:2654 / 2663
页数:10
相关论文
共 50 条
  • [31] Combining spatial and temporal logics: Expressiveness vs. complexity
    Gabelaia, D
    Kontchakov, R
    Kurucz, A
    Wolter, F
    Zakharyaschev, M
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2005, 23 : 167 - 243
  • [32] Metapopulations and metacommunities: combining spatial and temporal perspectives in plant ecology
    Alexander, Helen M.
    Foster, Bryan L.
    Ballantyne, Ford
    Collins, Cathy D.
    Antonovics, Janis
    Holt, Robert D.
    JOURNAL OF ECOLOGY, 2012, 100 (01) : 88 - 103
  • [33] A Spatial-Temporal Correlation Approach for Data Reduction in Cluster-Based Sensor Networks
    Tayeh, Gaby Bou
    Makhoul, Abdallah
    Perera, Charith
    Demerjian, Jacques
    IEEE ACCESS, 2019, 7 : 50669 - 50680
  • [34] Spatial images from temporal data
    Turpin, Alex
    Musarra, Gabriella
    Kapitany, Valentin
    Tonolini, Francesco
    Lyons, Ashley
    Starshynov, Ilya
    Villa, Federica
    Conca, Enrico
    Fioranelli, Francesco
    Murray-Smith, Roderick
    Faccio, Daniele
    OPTICA, 2020, 7 (08): : 900 - 905
  • [35] A model for spatial and temporal data fusion
    Wu Ming-Quan
    Wang Jie
    Niu Zheng
    Zhao Yong-Qing
    Wang Chang-Yao
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2012, 31 (01) : 80 - 84
  • [36] Improvements in data reduction in direct pulse heating calorimetry
    Vukovic, GS
    Perovic, NL
    Maglic, KD
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1996, 17 (05) : 1057 - 1067
  • [37] NOISE REDUCTION IN MODIS NDVI TIME SERIES DATA BASED ON SPATIAL-TEMPORAL ANALYSIS
    de Oliveira, Julio Cesar
    Neves Epiphanio, Jose Carlos
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 2372 - 2375
  • [38] Some Improvements in VCP for Data Traffic Reduction in WSN
    Kotobelli, Ezmerina
    Banushi, Mario
    Tafaj, Igli
    Allkoci, Alban
    ADVANCES IN INTERNET, DATA & WEB TECHNOLOGIES, 2018, 17 : 711 - 722
  • [39] Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells
    de Luis Balaguer, Maria Angels
    Fisher, Adam P.
    Clark, Natalie M.
    Guadalupe Fernandez-Espinosa, Maria
    Moller, Barbara K.
    Weijers, Dolf
    Lohmann, Jan U.
    Williams, Cranos
    Lorenzo, Oscar
    Sozzani, Rosangela
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (36) : E7632 - E7640
  • [40] Prediction and spatial-temporal changes of soil organic matter in the Huanghuaihai Plain by combining legacy and recent data
    Zhang, Fangfang
    Liu, Ya
    Wu, Shiwen
    Liu, Jie
    Luo, Yali
    Ma, Yuxin
    Pan, Xianzhang
    GEODERMA, 2024, 450