Combining Spatial and Temporal Properties for Improvements in Data Reduction

被引:1
|
作者
Fulp, Megan Hickman [1 ]
Biswas, Ayan [2 ]
Calhoun, Jon C. [1 ]
机构
[1] Clemson Univ, Holcombe Dept Elect & Comp Engn, Clemson, SC 29634 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
基金
美国国家科学基金会;
关键词
Data Reduction; Data Sampling; Importance Sampling; Feature Preservation; LOSSY COMPRESSION; TIME; VISUALIZATION;
D O I
10.1109/BigData50022.2020.9378457
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to I/O bandwidth limitations, intelligent in situ data reduction methods are needed to enable post-hoc workflows. Current state-of-the-art sampling methods save data points if they deem them spatially or temporally important. By analyzing the properties of the data values at each time-step, two consecutive steps may be very similar. This research follows the notion that if neighboring time-steps are very similar, samples from both are unnecessary, which leaves storage for adding more useful samples. Here, we present an investigation of the combination of spatial and temporal sampling to drastically reduce data size without the loss of valuable information. We demonstrate that, by reusing samples, our reconstructed data set reduces the overall data size while achieving a higher post-reconstruction quality over other reduction methods.
引用
收藏
页码:2654 / 2663
页数:10
相关论文
共 50 条
  • [21] Combining spatial and temporal expectations to improve visual perception
    Rohenkohl, Gustavo
    Gould, Ian C.
    Pessoa, Jessica
    Nobre, Anna C.
    JOURNAL OF VISION, 2014, 14 (04):
  • [22] Real-Time Data Processing Techniques for a Scalable Spatial and Temporal Dimension Reduction
    Gavric, Aleksandar
    Vujoscvic, Dusan
    Radosavljevic, Nemanja
    Prvulovic, Petar
    2022 21ST INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA (INFOTEH), 2022,
  • [23] Combining clutter reduction methods for temporal network visualization
    Ponciano, Jean R.
    Linhares, Claudio D. G.
    Rocha, Luis E. C.
    Faria, Elaine R.
    Travencolo, Bruno A. N.
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1748 - 1755
  • [24] Nonlinear distortion reduction in active arrays taking advantage of their spatial power-combining properties
    Cabria, L
    Garcia, JA
    Tazán, A
    Mediavilla, A
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2006, 16 (01) : 24 - 33
  • [25] Spatial econometric models for panel data - Incorporating spatial and temporal data
    Frazier, C
    Kockelman, KM
    TRANSPORTATION AND LAND DEVELOPMENT 2005, 2005, (1902): : 80 - 90
  • [26] An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery
    Wu, Mingquan
    Wu, Chaoyang
    Huang, Wenjiang
    Niu, Zheng
    Wang, Changyao
    Li, Wang
    Hao, Pengyu
    INFORMATION FUSION, 2016, 31 : 14 - 25
  • [27] Combining forward and backward analyses of temporal properties
    Massé, D
    PROGRAMS AS DATA OBJECTS, PROCEEDINGS, 2001, 2053 : 103 - 116
  • [28] Combining multispectral data of differing spatial resolution
    Price, JC
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03): : 1199 - 1203
  • [29] Combining multispectral data of differing spatial resolution
    Price, John C.
    IEEE Transactions on Geoscience and Remote Sensing, 1999, 37 (3 I): : 1199 - 1203
  • [30] Combining Spatial Proximity and Temporal Continuity for Learning Invariant Representations
    Kursun, Olcay
    Aytekin, Tevfik
    2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2012, : 871 - 873