A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

被引:21
作者
Ambrose, J. L. [1 ,2 ]
Haase, K. [1 ,2 ]
Russo, R. S. [2 ]
Zhou, Y. [2 ]
White, M. L. [2 ]
Frinak, E. K. [2 ]
Jordan, C. [2 ]
Mayne, H. R. [1 ]
Talbot, R. [2 ]
Sive, B. C. [2 ]
机构
[1] Univ New Hampshire, Dept Chem, Durham, NH 03824 USA
[2] Univ New Hampshire, Inst Study Earth Oceans & Space, Climate Change Res Ctr, Durham, NH 03824 USA
基金
美国海洋和大气管理局;
关键词
REACTION-MASS-SPECTROMETRY; VOLATILE ORGANIC-COMPOUNDS; ION FLOW TUBE; GAS-PHASE REACTIONS; TROPOSPHERIC CHEMISTRY; NEW-ENGLAND; ATMOSPHERIC CHEMISTRY; PHOTOCHEMICAL DATA; UNITED-STATES; ALPHA-PINENE;
D O I
10.5194/amt-3-959-2010
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Toluene was measured using both a gas chromatographic system (GC), with a flame ionization detector (FID), and a proton transfer reaction-mass spectrometer (PTR-MS) at the AIRMAP atmospheric monitoring station Thompson Farm (THF) in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including alpha- and beta-pinene, camphene, Delta(3)-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of similar to 2 and similar to 30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H3O+, O-2(+) and NO+ in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of similar to 0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13 +/- 0.02)x-(0.008 +/- 0.003) ppbv, suggesting a small similar to 13% positive bias in the PTR-MS measurements. The bias corresponded with a similar to 0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1 sigma measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by correcting the PTR-MS measurements for contributions from monoterpene fragmentation in the PTR-MS drift tube; however, the improvement was minor (<10%). Interferences in the PTRMS measurements from fragmentation of the monoterpene oxidation products pinonaldehyde, caronaldehyde and alpha-pinene oxide were also likely negligible. A relatively large and variable toluene background in the PTR-MS instrument likely drove the measurement bias; however, the precise contribution was difficult to accurately quantify and thus was not corrected for in this analysis. The results from THF suggest that toluene can be reliably quantified by PTR-MS using our operating conditions (drift tube pressure, temperature and voltage of 2.0 mbar, 45 degrees C and 600V, respectively) under the ambient compositions probed. This work extends the range of field conditions under which PTR-MS validation studies have been conducted.
引用
收藏
页码:959 / 980
页数:22
相关论文
共 75 条
[1]   Nighttime nitrate radical chemistry at Appledore island, Maine during the 2004 international consortium for atmospheric research on transport and transformation [J].
Ambrose, J. L. ;
Mao, H. ;
Mayne, H. R. ;
Stutz, J. ;
Talbot, R. ;
Sive, B. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D21)
[2]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[3]   Generation and validation of oxygenated volatile organic carbon standards for the 1995 Southern Oxidants Study Nashville Intensive [J].
Apel, EC ;
Calvert, JG ;
Greenberg, JP ;
Riemer, D ;
Zika, R ;
Kleindienst, TE ;
Lonneman, WA ;
Fung, K ;
Fujita, E .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D17) :22281-22294
[4]   A fast-GC/MS system to measure C2 to C4 carbonyls and methanol aboard aircraft -: art. no. 8794 [J].
Apel, EC ;
Hills, AJ ;
Lueb, R ;
Zindel, S ;
Eisele, S ;
Riemer, DD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D20)
[5]   Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species [J].
Atkinson, R. ;
Baulch, D. L. ;
Cox, R. A. ;
Crowley, J. N. ;
Hampson, R. F. ;
Hynes, R. G. ;
Jenkin, M. E. ;
Rossi, M. J. ;
Troe, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3625-4055
[6]   Gas-phase tropospheric chemistry of volatile organic compounds .1. Alkanes and alkenes [J].
Atkinson, R .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1997, 26 (02) :215-290
[7]   Evaluated kinetic and photochemical data for atmospheric chemistry:: Volume I -: gas phase reactions of Ox, HOx, NOx and SOx species [J].
Atkinson, R ;
Baulch, DL ;
Cox, RA ;
Crowley, JN ;
Hampson, RF ;
Hynes, RG ;
Jenkin, ME ;
Rossi, MJ ;
Troe, J .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2004, 4 :1461-1738
[8]   Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review [J].
Atkinson, R ;
Arey, J .
ATMOSPHERIC ENVIRONMENT, 2003, 37 :S197-S219
[9]  
ATKINSON R, 1994, J PHYS CHEM REF DATA, pR1
[10]  
Atkinson R., 1989, The Journal of Physical and Chemical Reference Data, V1, P246