An analysis of the block error probability performance of iterative decoding

被引:45
作者
Lentmaier, M
Truhachev, DV
Zigangirov, KS
Costello, DJ
机构
[1] DLR, German Aerosp Ctr, Inst Commun & Navigat, D-82230 Wessling, Germany
[2] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
[3] Univ Alberta, Elect & Comp Engn Res Fac, Edmonton, AB T6G 2V4, Canada
[4] Inst Informat Transmiss Problems, Moscow, Russia
[5] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
belief propagation; block error probability; convergence analysis; density evolution; iterative decoding; low-density parity-check (LDPC) codes; turbo codes;
D O I
10.1109/TIT.2005.856942
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Asymptotic iterative decoding performance is analyzed for several classes of iteratively decodable codes when the block length of the codes N and the number or iterations I go to infinity. Three classes of codes are considered. These are Gallager's regular low-density parity-check (LDPC) codes, Tanner's generalized LDPC (GLDPC) codes, and the turbo codes due to Berrou et al. It is proved that there exist codes in these classes and iterative decoding algorithms for these codes for which not only the bit error probability P-b, but also the block (frame) error probability P-B, goes to zero as N and I go to infinity.
引用
收藏
页码:3834 / 3855
页数:22
相关论文
共 45 条
[1]   OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE [J].
BAHL, LR ;
COCKE, J ;
JELINEK, F ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :284-287
[2]   Unveiling turbo codes: Some results on parallel concatenated coding schemes [J].
Benedetto, S ;
Montorsi, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) :409-428
[3]  
BERROU C, 1993, IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS 93 : TECHNICAL PROGRAM, CONFERENCE RECORD, VOLS 1-3, P1064, DOI 10.1109/ICC.1993.397441
[4]  
Bhattacharyya A., 1943, B CALCUTTA MATH SOC, V35, P99, DOI DOI 10.1038/157869B0
[5]   A logarithmic upper bound on the minimum distance of turbo codes [J].
Breiling, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1692-1710
[6]   Expander graph arguments for message-passing algorithms [J].
Burshtein, D ;
Miller, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :782-790
[7]   Iterative turbo decoder analysis based on density evolution [J].
Divsalar, D ;
Dolinar, S ;
Pollara, F .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2001, 19 (05) :891-907
[8]   Analyzing the turbo decoder using the Gaussian approximation [J].
El Gamal, H ;
Hammons, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :671-686
[9]  
Engdahl K., 1999, Problems of Information Transmission, V35, P295
[10]   Time-varying periodic convolutional codes with low-density parity-check matrix [J].
Felstrom, AJ ;
Zigangirov, KS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) :2181-2191