High Performance Thermoelectrics from Earth-Abundant Materials: Enhanced Figure of Merit in PbS by Second Phase Nanostructures

被引:453
作者
Zhao, Li-Dong [1 ]
Lo, Shih-Han [2 ]
He, Jiaqing [1 ,2 ]
Li, Hao [1 ]
Biswas, Kanishka [1 ]
Androulakis, John [1 ]
Wu, Chun-I [3 ]
Hogan, Timothy P. [3 ]
Chung, Duck-Young [4 ]
Dravid, Vinayak P. [2 ]
Kanatzidis, Mercouri G. [1 ,4 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[4] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
LATTICE THERMAL-CONDUCTIVITY; PBTE; EFFICIENCY; SYSTEM; SB;
D O I
10.1021/ja208658w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lead sulfide, a compound consisting of elements with high natural abundance, can be converted into an excellent thermoelectric material. We report extensive doping studies, which show that the power factor maximum for pure n-type PbS can be raised substantially to similar to 12 mu W cm(-1) K-2 at >723 K using 1.0 mol % PbCl2 as the electron donor dopant. We also report that the lattice thermal conductivity of PbS can be greatly reduced by adding selected metal sulfide phases. The thermal conductivity at 723 K can be reduced by similar to 50%, 52%, 30%, and 42% through introduction of up to 5.0 mol % Bi2S3, Sb2S3, SrS, and CaS, respectively. These phases form as nanoscale precipitates in the PbS matrix, as confirmed by transmission electron microscopy (TEM), and the experimental results show that they cause huge phonon scattering. As a consequence of this nanostructuring, ZT values as high as 0.8 and 0.78 at 723 K can be obtained for nominal bulk PbS material. When processed with spark plasma sintering, PbS samples with 1.0 mol % Bi2S3 dispersion phase and doped with 1.0 mol % PbCl2 show even lower levels of lattice thermal conductivity and further enhanced ZT values of 1.1 at 923 K. The promising thermoelectric properties promote PbS as a robust alternative to PbTe and other thermoelectric materials.
引用
收藏
页码:20476 / 20487
页数:12
相关论文
共 56 条
[41]   High Figure of Merit in Nanostructured n-Type KPbmSbTem+2 Thermoelectric Materials [J].
Poudeu, Pierre F. P. ;
Gueguen, Aurelie ;
Wu, Chun-I ;
Hogan, Tim ;
Kanatzidis, Mercouri G. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1046-1053
[42]   High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2 [J].
Poudeu, Pierre F. R. ;
D'Angelo, Jonathan ;
Downey, Adam D. ;
Short, Jarrod L. ;
Hogan, Timothy P. ;
Kanatzidis, Mercouri G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (23) :3835-3839
[43]  
Ravich IUI, 1970, SEMICONDUCTING LEAD
[44]  
SMIRNOV IA, 1961, SOV PHYS-SOL STATE, V2, P1793
[45]   Complex thermoelectric materials [J].
Snyder, G. Jeffrey ;
Toberer, Eric S. .
NATURE MATERIALS, 2008, 7 (02) :105-114
[46]   Large Enhancements in the Thermoelectric Power Factor of Bulk PbTe at High Temperature by Synergistic Nanostructuring [J].
Sootsman, Joseph R. ;
Kong, Huijun ;
Uher, Ctirad ;
D'Angelo, Jonathan James ;
Wu, Chim-I ;
Hogan, Timothy P. ;
Caillat, Thierry ;
Kanatzidis, Mercouri G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (45) :8618-8622
[47]   Strong reduction of thermal conductivity in nanostructured PbTe prepared by matrix encapsulation [J].
Sootsman, Joseph R. ;
Pcionek, Robert J. ;
Kong, Huijun ;
Uher, Ctirad ;
Kanatzidis, Mercouri G. .
CHEMISTRY OF MATERIALS, 2006, 18 (21) :4993-4995
[48]   New and Old Concepts in Thermoelectric Materials [J].
Sootsman, Joseph R. ;
Chung, Duck Young ;
Kanatzidis, Mercouri G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (46) :8616-8639
[49]   The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3 [J].
Toprak, MS ;
Stiewe, C ;
Platzek, D ;
Williams, S ;
Bertini, L ;
Müller, EC ;
Gatti, C ;
Zhang, Y ;
Rowe, M ;
Muhammed, M .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (12) :1189-1196
[50]   Heavily Doped p-Type PbSe with High Thermoelectric Performance: An Alternative for PbTe [J].
Wang, Heng ;
Pei, Yanzhong ;
LaLonde, Aaron D. ;
Snyder, G. Jeffrey .
ADVANCED MATERIALS, 2011, 23 (11) :1366-1370