Existence of an anti-periodic solution for the quasilinear wave equation with viscosity

被引:45
作者
Nakao, M
机构
[1] Graduate School of Mathematics, Kyushu University, Ropponmatsu
关键词
D O I
10.1006/jmaa.1996.0465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a strong anti-periodic solution for the quasilinear wave equation with viscosity u(tt) - div{sigma(\del u\(2)) del u} - Delta u(t) = f(x, t) in Omega x R under the Dirichlet boundary condition u(t)\(partial derivative Omega) = 0, where Omega is a bounded domain in R(N) with the boundary partial derivative Omega and sigma(v(2)) is a function like 1/root + v(2). (C) 1996 Academic Press, Inc.
引用
收藏
页码:754 / 764
页数:11
相关论文
共 22 条
[11]   GLOBAL EXISTENCE AND EXPONENTIAL STABILITY OF SMALL SOLUTIONS TO NONLINEAR VISCOELASTICITY [J].
KAWASHIMA, S ;
SHIBATA, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (01) :189-208
[12]   ON A GLOBAL IN TIME EXISTENCE THEOREM OF SMOOTH SOLUTIONS TO A NONLINEAR-WAVE EQUATION WITH VISCOSITY [J].
KOBAYASHI, T ;
PECHER, H ;
SHIBATA, Y .
MATHEMATISCHE ANNALEN, 1993, 296 (02) :215-234
[13]   THE GLOBAL EXISTENCE OF SMALL AMPLITUDE SOLUTIONS TO THE NONLINEAR ACOUSTIC-WAVE EQUATION [J].
MIZOHATA, K ;
UKAI, S .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1993, 33 (02) :505-522
[14]   Anti-periodic solution for u(tt)-(sigma(u(x)))(x)-u(xxt)=f(x,t) [J].
Nakao, M ;
Okochi, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 197 (03) :796-809
[15]   ENERGY DECAY FOR THE QUASI-LINEAR WAVE-EQUATION WITH VISCOSITY [J].
NAKAO, M .
MATHEMATISCHE ZEITSCHRIFT, 1995, 219 (02) :289-299
[16]  
Nakao M, 1996, ADV MATH SCI APPL, V6, P267
[17]  
OKOCHI H, 1990, J FUNCT ANAL, V91, P771
[18]  
PECHER H, 1980, J MATH ANAL APPL, V73, P279
[19]  
SOWUNMI C, 1975, REND ISTIT MAT U TRI, V8, P58
[20]  
STRAUSS W, 1966, PAC J MATH, V19, P453