Existence of an anti-periodic solution for the quasilinear wave equation with viscosity

被引:45
作者
Nakao, M
机构
[1] Graduate School of Mathematics, Kyushu University, Ropponmatsu
关键词
D O I
10.1006/jmaa.1996.0465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a strong anti-periodic solution for the quasilinear wave equation with viscosity u(tt) - div{sigma(\del u\(2)) del u} - Delta u(t) = f(x, t) in Omega x R under the Dirichlet boundary condition u(t)\(partial derivative Omega) = 0, where Omega is a bounded domain in R(N) with the boundary partial derivative Omega and sigma(v(2)) is a function like 1/root + v(2). (C) 1996 Academic Press, Inc.
引用
收藏
页码:754 / 764
页数:11
相关论文
共 22 条
[1]   ON THE EXISTENCE OF SOLUTIONS TO THE EQUATION UTT = UXXT + SIGMA-(UX)X [J].
ANDREWS, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 35 (02) :200-231
[2]  
[Anonymous], 1980, OSAKA J MATH
[3]  
[Anonymous], 1975, KYUSHU U
[4]   SOME NON-LINEAR EVOLUTION EQUATIONS WITH STRONG DISSIPATION [J].
EBIHARA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 30 (02) :149-164
[5]   GRADIENT ESTIMATES FOR SOLUTIONS OF PARABOLIC EQUATIONS AND SYSTEMS [J].
ENGLER, H ;
KAWOHL, B ;
LUCKHAUS, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 147 (02) :309-329
[6]  
ENGLER H., 1987, CONT MATH, V64, P219
[7]  
FRIEDMANN, 1988, PAC J MATH, V135, P219
[8]   ON EXISTENCE UNIQUENESS AND STABILITY OF SOLUTIONS OF EQUATION RHOOCHITT = EPSILON(CHIX) + LAMBDACHIXXT [J].
GREENBER.JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 25 (03) :575-&
[9]  
GREENBERG JM, 1968, J MATH MECH, V17, P707
[10]  
HARAUX A, 1989, MANUSCRIPTA MATH, V63, P475