Existence of an anti-periodic solution for the quasilinear wave equation with viscosity

被引:44
|
作者
Nakao, M
机构
[1] Graduate School of Mathematics, Kyushu University, Ropponmatsu
关键词
D O I
10.1006/jmaa.1996.0465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a strong anti-periodic solution for the quasilinear wave equation with viscosity u(tt) - div{sigma(\del u\(2)) del u} - Delta u(t) = f(x, t) in Omega x R under the Dirichlet boundary condition u(t)\(partial derivative Omega) = 0, where Omega is a bounded domain in R(N) with the boundary partial derivative Omega and sigma(v(2)) is a function like 1/root + v(2). (C) 1996 Academic Press, Inc.
引用
收藏
页码:754 / 764
页数:11
相关论文
共 50 条