Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities

被引:93
|
作者
Graf, Arko [1 ,2 ]
Tropf, Laura [2 ]
Zakharko, Yuriy [1 ]
Zaumseil, Jana [1 ]
Gather, Malte C. [2 ]
机构
[1] Heidelberg Univ, Inst Phys Chem, Fac Chem & Earth Sci, Neuenheimer Feld 253, D-69120 Heidelberg, Germany
[2] Univ St Andrews, Sch Phys & Astron, SUPA, Organ Semicond Ctr, St Andrews KY16 9SS, Fife, Scotland
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 欧洲研究理事会;
关键词
ORGANIC SEMICONDUCTOR MICROCAVITIES; ROOM-TEMPERATURE; CHARGE-TRANSPORT; EMISSION; NETWORKS;
D O I
10.1038/ncomms13078
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Near-infrared absorbance of single-walled carbon nanotubes dispersed in dimethylformamide
    Krupke, R
    Hennrich, F
    Hampe, O
    Kappes, MM
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (24): : 5667 - 5669
  • [22] Near-infrared optical sensors based on single-walled carbon nanotubes
    Paul W. Barone
    Seunghyun Baik
    Daniel A. Heller
    Michael S. Strano
    Nature Materials, 2005, 4 : 86 - 92
  • [23] Near-infrared optical sensors based on single-walled carbon nanotubes
    Barone, PW
    Baik, S
    Heller, DA
    Strano, MS
    NATURE MATERIALS, 2005, 4 (01) : 86 - U16
  • [24] Immunoassay with Single-Walled Carbon Nanotubes as Near-Infrared Fluorescent Labels
    Iizumi, Yoko
    Okazaki, Toshiya
    Ikehara, Yuzuru
    Ogura, Mutsuo
    Fukata, Shinsuke
    Yudasaka, Masako
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (16) : 7665 - 7670
  • [25] Ultrastrongly Coupled Exciton-Polaritons in Metal-Clad Organic Semiconductor Microcavities
    Kena-Cohen, Stephane
    Maier, Stefan A.
    Bradley, Donal D. C.
    ADVANCED OPTICAL MATERIALS, 2013, 1 (11): : 827 - 833
  • [26] Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity
    Wenus, J.
    Parashkov, R.
    Ceccarelli, S.
    Brehier, A.
    Lauret, J. -S.
    Skolnick, M. S.
    Deleporte, E.
    Lidzey, D. G.
    PHYSICAL REVIEW B, 2006, 74 (23):
  • [27] Trion-Polariton Formation in Single-Walled Carbon Nanotube Microcavities
    Moehl, Charles
    Graf, Arko
    Berger, Felix J.
    Luettgens, Jan
    Zakharko, Yuriy
    Lumsargis, Victoria
    Gather, Malte C.
    Zaumseil, Jana
    ACS PHOTONICS, 2018, 5 (06): : 2074 - 2080
  • [28] Single-Walled Carbon Nanotube Dark Exciton Photoluminescence Dynamics
    Tumiel, Trevor M.
    Amin, Mitesh
    Krauss, Todd D.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (45): : 25022 - 25029
  • [29] Enhanced Performance of Single-Walled Carbon Nanotube-Germanium Near-Infrared Photodetector by Doping with Au Nanoparticles
    Qi, Tao
    Yu, Yaolun
    Liu, Junku
    Jia, Yi
    Ding, Dazhi
    PHOTONICS, 2022, 9 (09)
  • [30] Differential near-infrared imaging of heterocysts using single-walled carbon nanotubes
    Alessandra Antonucci
    Melania Reggente
    Alice J. Gillen
    Charlotte Roullier
    Benjamin P. Lambert
    Ardemis A. Boghossian
    Photochemical & Photobiological Sciences, 2023, 22 : 103 - 113