Kolmogorov theorem and classical perturbation theory

被引:31
|
作者
Giorgilli, A [1 ]
Locatelli, U [1 ]
机构
[1] OBSERV COTE AZUR,F-06304 NICE 4,FRANCE
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1997年 / 48卷 / 02期
关键词
KAM-theory; quasiperiodic motion; Hamiltonian perturbations;
D O I
10.1007/PL00001475
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We reconsider the original proof of Kolmogorov's theorem in the light of classical perturbation methods based on expansions in some parameter. With a careful analysis of the accumulation of small divisors we prove that their effect is bounded by a geometrically increasing numerical sequence. This allows us to achieve the proof without using the so called quadratic method.
引用
收藏
页码:220 / 261
页数:42
相关论文
共 12 条