Fitting of Fuzzy Fractal Interpolation for Uncertain Data

被引:0
作者
Xiao, Xiaoping [1 ]
Li, Zisheng [2 ]
Yan, Shiliang [1 ]
机构
[1] SW Univ Sci & Technol, Engn & Technol Ctr, Mianyang 621010, Sichuan, Peoples R China
[2] Sw Uni Sci & technol, Sch Mfg Sci & Engn, Mianyang, Sichuan, Peoples R China
来源
INFORMATION AND AUTOMATION | 2011年 / 86卷
关键词
Uncertain data processing; Fuzzy set and fuzzy number; Fuzzy interpolation point; Iterated function system; SURFACES; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tackling of uncertain data is a major problem in data analysis and processing. The fuzzy theory with fuzzy numbers and fractal interpolation is employed to solve the issue of uncertainty. Sample data is used as the kernel of Gaussian fuzzy membership function and its fuzzy numbers are obtained by specifying lambda-cut. These fuzzy numbers are used as uncertain data and defined as a new kind of fuzzy interpolation points. With these interpolation points fractal interpolation method is applied to fit curve of sample data. By these definitions, the flow of interpolation approach is given, and example is illustrated to show that a novel interpolation scheme is proposed for manipulating uncertain data.
引用
收藏
页码:78 / +
页数:2
相关论文
共 10 条
  • [1] Fuzzy linguistic model for interpolation
    Abbasbandy, S.
    Firozja, M. Adabitabar
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 551 - 556
  • [2] FRACTAL FUNCTIONS AND INTERPOLATION
    BARNSLEY, MF
    [J]. CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) : 303 - 329
  • [3] Fractal interpolation surfaces derived from Fractal interpolation functions
    Bouboulis, P.
    Dalla, L.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 919 - 936
  • [4] Byung S.M., 1998, J FSS, V96, P353
  • [5] Natural bicubic spline fractal interpolation
    Chand, A. K. B.
    Navascues, M. A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3679 - 3691
  • [6] A model for CAGD using fuzzy logic
    Jacas, J
    Monreal, A
    Recasens, J
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1997, 16 (3-4) : 289 - 308
  • [7] Jamaludin M.A., 2004, INT C COMP GRAPH IM, P227
  • [8] Kaleva O., 1994, INTERPOLATION FUZZY, V61, P63
  • [9] Constructing consistent fuzzy surfaces from fuzzy data
    Lodwick, WA
    Santos, J
    [J]. FUZZY SETS AND SYSTEMS, 2003, 135 (02) : 259 - 277
  • [10] A FUZZY LAGRANGE INTERPOLATION THEOREM
    LOWEN, R
    [J]. FUZZY SETS AND SYSTEMS, 1990, 34 (01) : 33 - 38