Gyrokinetic simulations of the tearing instability

被引:28
作者
Numata, Ryusuke [1 ,2 ,3 ]
Dorland, William [2 ]
Howes, Gregory G. [4 ]
Loureiro, Nuno F. [5 ]
Rogers, Barrett N. [6 ]
Tatsuno, Tomoya [2 ,7 ]
机构
[1] Univ Hyogo, Grad Sch Simulat Studies, Kobe, Hyogo 6500047, Japan
[2] Univ Maryland, Ctr Multiscale Plasma Dynam, College Pk, MD 20742 USA
[3] Univ Vienna, Wolfgang Pauli Inst, A-1090 Vienna, Austria
[4] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[5] Univ Tecn Lisboa, Assoc EURATOM IST, Inst Plasmas & Fusao Nucl, Lab Assoc,Inst Super Tecn, P-1049001 Lisbon, Portugal
[6] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA
[7] Univ Electrocommun, Dept Commun Engn & Informat, Chofu, Tokyo 1828585, Japan
关键词
plasma collision processes; plasma kinetic theory; plasma pressure; plasma simulation; plasma temperature; plasma thermodynamics; tearing instability; NONLINEAR GROWTH;
D O I
10.1063/1.3659035
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Linear gyrokinetic simulations covering the collisional-collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory for a low plasma beta case in which ion kinetic dynamics are negligible. Electron wave-particle interactions (Landau damping), finite Larmor radius, and other kinetic effects invalidate the fluid theory in the collisionless regime, in which a general non-polytropic equation of state for pressure (temperature) perturbations should be considered. We also vary the ratio of the background ion to electron temperatures and show that the scalings expected from existing calculations can be recovered, but only in the limit of very low beta. (C) 2011 American Institute of Physics. [doi:10.1063/1.3659035]
引用
收藏
页数:6
相关论文
共 27 条
[1]   Linearized model Fokker-Planck collision operators for gyrokinetic simulations. I. Theory [J].
Abel, I. G. ;
Barnes, M. ;
Cowley, S. C. ;
Dorland, W. ;
Schekochihin, A. A. .
PHYSICS OF PLASMAS, 2008, 15 (12)
[2]   Parametric analysis of the two-fluid tearing instability [J].
Ahedo, Eduardo ;
Ramos, Jesus J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (05)
[3]   Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests [J].
Barnes, M. ;
Abel, I. G. ;
Dorland, W. ;
Ernst, D. R. ;
Hammett, G. W. ;
Ricci, P. ;
Rogers, B. N. ;
Schekochihin, A. A. ;
Tatsuno, T. .
PHYSICS OF PLASMAS, 2009, 16 (07)
[4]  
BISKMAP D., 2000, MAGNETIC RECONNECTIO
[5]  
Coppi B., 1976, SvJPP, V2, P533
[6]   LINEAR-STABILITY OF TEARING MODES [J].
COWLEY, SC ;
KULSRUD, RM ;
HAHM, TS .
PHYSICS OF FLUIDS, 1986, 29 (10) :3230-3244
[7]   Finite Larmor radius effects in the nonlinear dynamics of collisionless magnetic reconnection [J].
Del Sarto, D. ;
Marchetto, C. ;
Pegoraro, F. ;
Califano, F. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (03)
[8]   Gyrokinetic Microtearing Turbulence [J].
Doerk, H. ;
Jenko, F. ;
Pueschel, M. J. ;
Hatch, D. R. .
PHYSICAL REVIEW LETTERS, 2011, 106 (15)
[9]   Electron temperature gradient turbulence [J].
Dorland, W ;
Jenko, F ;
Kotschenreuther, M ;
Rogers, BN .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5579-5582
[10]   KINETIC-THEORY OF TEARING INSTABILITIES [J].
DRAKE, JF ;
LEE, YC .
PHYSICS OF FLUIDS, 1977, 20 (08) :1341-1353