SNR Estimation in Linear Systems With Gaussian Matrices

被引:12
|
作者
Suliman, Mohamed A. [1 ]
Alrashdi, Ayed M. [1 ,2 ]
Ballal, Tarig [1 ]
Al-Naffouri, Tareq Y. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Thuwal 23955, Saudi Arabia
[2] Univ Hail, Dept Elect Engn, Hail 55476, Saudi Arabia
关键词
Random matrix theory (RMT); ridge regression; signal-to-noise ratio (SNR) estimation; MASSIVE MIMO; CHANNELS; SIGNAL; NOISE;
D O I
10.1109/LSP.2017.2757398
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linearsystem has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.
引用
收藏
页码:1867 / 1871
页数:5
相关论文
共 50 条
  • [41] Gaussian-Cauchy Mixture Kernel Function Based Maximum Correntropy Criterion Kalman Filter for Linear Non-Gaussian Systems
    Ge, Quanbo
    Bai, Xuefei
    Zeng, Pingliang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 158 - 172
  • [42] Robust estimation of DOA from array data at low SNR
    Mecklenbraeuker, Christoph F.
    Gerstoft, Peter
    Zoechmann, Erich
    Groll, Herbert
    SIGNAL PROCESSING, 2020, 166
  • [43] Noise Estimation Proposal for Real Time DSL Systems using Linear Regression and Fuzzy Systems
    Farias, F. S.
    Moritsuka, N. S.
    Borges, G. S.
    de Souza, L. V.
    Frances, C. R. L.
    Costa, J. C. W. A.
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 759 - 762
  • [44] Reinforcement Learning for Partially Observable Linear Gaussian Systems Using Batch Dynamics of Noisy Observations
    Yaghmaie, Farnaz Adib
    Modares, Hamidreza
    Gustafsson, Fredrik
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (09) : 6397 - 6404
  • [45] Non-linear function for a Gaussian photo-reception in standard IM/DD systems
    Omella, M.
    Jimenez, A.
    Bosco, G.
    Poggiolini, P.
    Prat, J.
    OPTICAL AND QUANTUM ELECTRONICS, 2010, 42 (03) : 165 - 178
  • [46] SNR Model for Generalized Droop With Constant Output Power Amplifier Systems and Experimental Measurements
    Downie, John D.
    Liang, Xiaojun
    Ivanov, Viacheslav
    Sterlingov, Petr
    Kaliteevskiy, Nikolay
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (12) : 3214 - 3220
  • [47] Blind SNR estimation for M-ARY Frequency Shift Keying signal using covariance technique
    Krishnamurthy, Sunil Devanahalli
    Sabat, Samrat L.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2016, 70 (10) : 1388 - 1394
  • [48] Spatially correlated channel estimation for RIS-assisted MIMO systems with correlated gaussian perturbation
    Qin, Changjian
    Zhang, Pinchang
    He, Ji
    IET COMMUNICATIONS, 2023, 17 (16) : 1888 - 1898
  • [49] N-stage splitting for maximum penalized likelihood estimation with Gaussian data and stationary linear iterative methods
    Latham, GA
    Yu, S
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 62 (04) : 375 - 393
  • [50] CRLB for DOA Estimation in Gaussian and Non-Gaussian Mixed Environments
    Huang, Jiyan
    Wan, Qun
    WIRELESS PERSONAL COMMUNICATIONS, 2013, 68 (04) : 1673 - 1688