Edge Guided Context Aggregation Network for Semantic Segmentation of Remote Sensing Imagery

被引:8
|
作者
Liu, Zhiqiang [1 ]
Li, Jiaojiao [1 ]
Song, Rui [1 ]
Wu, Chaoxiong [1 ]
Liu, Wei [2 ]
Li, Zan [1 ]
Li, Yunsong [1 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710000, Peoples R China
[2] State Key Lab Geoinformat Engn, Xian 710054, Peoples R China
基金
中国博士后科学基金;
关键词
remote sensing imagery; semantic segmentation; deep learning; context aggregation; CLASSIFIER; FOREST;
D O I
10.3390/rs14061353
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Semantic segmentation of remote sensing imagery (RSI) has obtained great success with the development of deep convolutional neural networks (DCNNs). However, most of the existing algorithms focus on designing end-to-end DCNNs, but neglecting to consider the difficulty of segmentation in imbalance categories, especially for minority categories in RSI, which limits the performance of RSI semantic segmentation. In this paper, a novel edge guided context aggregation network (EGCAN) is proposed for the semantic segmentation of RSI. The Unet is employed as backbone. Meanwhile, an edge guided context aggregation branch and minority categories extraction branch are designed for a comprehensive enhancement of semantic modeling. Specifically, the edge guided context aggregation branch is proposed to promote entire semantic comprehension of RSI and further emphasize the representation of edge information, which consists of three modules: edge extraction module (EEM), dual expectation maximization attention module (DEMA), and edge guided module (EGM). EEM is created primarily for accurate edge tracking. According to that, DEMA aggregates global contextual features with different scales and the edge features along spatial and channel dimensions. Subsequently, EGM cascades the aggregated features into the decoder process to capture long-range dependencies and further emphasize the error-prone pixels in the edge region to acquire better semantic labels. Besides this, the exploited minority categories extraction branch is presented to acquire rich multi-scale contextual information through an elaborate hybrid spatial pyramid pooling module (HSPP) to distinguish categories taking a small percentage and background. On the Tianzhi Cup dataset, the proposed algorithm EGCAN achieved an overall accuracy of 84.1% and an average cross-merge ratio of 68.1%, with an accuracy improvement of 0.4% and 1.3% respectively compared to the classical Deeplabv3+ model. Extensive experimental results on the dataset released in ISPRS Vaihingen and Potsdam benchmarks also demonstrate the effectiveness of the proposed EGCAN over other state-of-the-art approaches.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery
    Yang, Xuan
    Li, Shanshan
    Chen, Zhengchao
    Chanussot, Jocelyn
    Jia, Xiuping
    Zhang, Bing
    Li, Baipeng
    Chen, Pan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 177 : 238 - 262
  • [32] Hidden Feature-Guided Semantic Segmentation Network for Remote Sensing Images
    Wang, Zhen
    Zhang, Shanwen
    Zhang, Chuanlei
    Wang, Buhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [33] HRCNet: High-Resolution Context Extraction Network for Semantic Segmentation of Remote Sensing Images
    Xu, Zhiyong
    Zhang, Weicun
    Zhang, Tianxiang
    Li, Jiangyun
    REMOTE SENSING, 2021, 13 (01) : 1 - 23
  • [34] Hybridizing Cross-Level Contextual and Attentive Representations for Remote Sensing Imagery Semantic Segmentation
    Li, Xin
    Xu, Feng
    Xia, Runliang
    Lyu, Xin
    Gao, Hongmin
    Tong, Yao
    REMOTE SENSING, 2021, 13 (15)
  • [35] Adaptive context aggregation network for H2 remote sensing imagery classification
    Hu X.
    Wang X.
    Zhong Y.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1175 - 1186
  • [36] Convolutional Neural Network for the Semantic Segmentation of Remote Sensing Images
    Muhammad Alam
    Jian-Feng Wang
    Cong Guangpei
    LV Yunrong
    Yuanfang Chen
    Mobile Networks and Applications, 2021, 26 : 200 - 215
  • [37] Semantic Segmentation of Remote Sensing Imagery Based on Improved Squeeze and Excitaion Block
    Wu Shengwei
    Fang Jiaoli
    Zhu Daming
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [38] Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning
    Kemker, Ronald
    Salvaggio, Carl
    Kanan, Christopher
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 145 : 60 - 77
  • [39] U-Net Ensemble for Enhanced Semantic Segmentation in Remote Sensing Imagery
    Dimitrovski, Ivica
    Spasev, Vlatko
    Loshkovska, Suzana
    Kitanovski, Ivan
    REMOTE SENSING, 2024, 16 (12)
  • [40] Semantic segmentation network combined with edge detection for building extraction in remote sensing images
    Jiang, Zhongze
    Chen, Zhong
    Ji, Kaixiang
    Yang, Jian
    MIPPR 2019: PATTERN RECOGNITION AND COMPUTER VISION, 2020, 11430