A dominant conformational role for amino acid diversity in minimalist protein-protein interfaces

被引:64
作者
Gilbreth, Ryan N. [1 ]
Esaki, Kaori [1 ]
Koide, Akiko [1 ]
Sidhu, Sachdev S. [2 ]
Koide, Shohei [1 ]
机构
[1] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[2] Genentech Inc, Dept Prot Engn, San Francisco, CA 94080 USA
关键词
protein engineering; molecular recognition; scanning mutagenesis; antibody mimic; binding hot spot;
D O I
10.1016/j.jmb.2008.06.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed "monobodies." One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose-binding protein. The YSX monobody bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution X-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 29 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies [J].
Birtalan, Sara ;
Zhang, Yingnan ;
Fellouse, Frederic A. ;
Shao, Lihua ;
Schaefer, Gabriele ;
Sidhu, Sachdev S. .
JOURNAL OF MOLECULAR BIOLOGY, 2008, 377 (05) :1518-1528
[3]   Anatomy of hot spots in protein interfaces [J].
Bogan, AA ;
Thorn, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (01) :1-9
[4]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[5]   A HOT-SPOT OF BINDING-ENERGY IN A HORMONE-RECEPTOR INTERFACE [J].
CLACKSON, T ;
WELLS, JA .
SCIENCE, 1995, 267 (5196) :383-386
[6]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190
[7]   Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies [J].
De Genst, E ;
Silence, K ;
Decanniere, K ;
Conrath, K ;
Loris, R ;
Kinne, R ;
Muyldermans, S ;
Wyns, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (12) :4586-4591
[8]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[9]   Tyrosine plays a dominant functional role in the paratope of a synthetic antibody derived from a four amino acid code [J].
Fellouse, FA ;
Barthelemy, PA ;
Kelley, RF ;
Sidhu, SS .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 357 (01) :100-114
[10]   Molecular recognition by a binary code [J].
Fellouse, FA ;
Li, B ;
Compaan, DM ;
Peden, AA ;
Hymowitz, SG ;
Sidhu, SS .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 348 (05) :1153-1162