Conditions for prosperity and depression of a stochastic R&D model under regime switching

被引:1
作者
Zhang, Mengqing [1 ,2 ]
Zhang, Qimin [1 ]
机构
[1] Ningxia Univ, Sch Math & Stat, Yinchuan, Ningxia, Peoples R China
[2] North Minzu Univ, Sch Preparatory Educ, Yinchuan, Ningxia, Peoples R China
关键词
Stochastic R&D model; Markov chain; Prosperity and depression in the mean; PREDATOR-PREY MODEL; STATIONARY DISTRIBUTION; ERGODICITY; GROWTH; PHYTOPLANKTON; PERSISTENCE; EXTINCTION;
D O I
10.1186/s13662-020-02633-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stochastic research and development (R&D) model plays an important role in economic growth theories. To explain the growth performance of the economy under regime switching, we first establish sufficient criteria that ensure economic prosperity, nonprosperity and depression in the R&D model disturbed by white and color noise. Then, we determine the threshold between prosperity and depression. Furthermore, we estimate an upper bound of the growth rates of technological progress and capital accumulation in the prosperity case. The results indicate that color noise sensitively impacts the growth performance of the economy in the R&D model. Finally, numerical simulations are conducted to verify our theoretical work.
引用
收藏
页数:23
相关论文
共 25 条
[1]   A MODEL OF GROWTH THROUGH CREATIVE DESTRUCTION [J].
AGHION, P ;
HOWITT, P .
ECONOMETRICA, 1992, 60 (02) :323-351
[2]  
[Anonymous], 2007, Stochastic Differential Equations and Applications
[3]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[4]   Stochastic growth models and their econometric implications [J].
Binder, M ;
Pesaran, MH .
JOURNAL OF ECONOMIC GROWTH, 1999, 4 (02) :139-183
[5]   PARTICULAR CLASS OF CONTINUOUS-TIME STOCHASTIC GROWTH MODELS [J].
BOURGUIGNON, F .
JOURNAL OF ECONOMIC THEORY, 1974, 9 (02) :141-158
[6]   Business cycles in a two-sector model of endogenous growth [J].
Canton, E .
ECONOMIC THEORY, 2002, 19 (03) :477-492
[7]   A stochastic SIS epidemic model with vaccination [J].
Cao, Boqiang ;
Shan, Meijing ;
Zhang, Qimin ;
Wang, Weiming .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 :127-143
[8]   On endogenous growth under uncertainty [J].
de Hek, PA .
INTERNATIONAL ECONOMIC REVIEW, 1999, 40 (03) :727-744
[9]   Dynamic risk measures for processes via backward stochastic differential equations [J].
Ji, Ronglin ;
Shi, Xuejun ;
Wang, Shijie ;
Zhou, Jinming .
INSURANCE MATHEMATICS & ECONOMICS, 2019, 86 :43-50
[10]   R-AND-D-BASED MODELS OF ECONOMIC-GROWTH [J].
JONES, CI .
JOURNAL OF POLITICAL ECONOMY, 1995, 103 (04) :759-784