Widespread inhibition of daytime ecosystem respiration

被引:111
作者
Keenan, Trevor F. [1 ,2 ]
Migliavacca, Mirco [3 ]
Papale, Dario [4 ,5 ]
Baldocchi, Dennis [2 ]
Reichstein, Markus [3 ]
Torn, Margaret [1 ]
Wutzler, Thomas [3 ]
机构
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
[3] Max Planck Inst Biogeochem, Jena, Germany
[4] Univ Tuscia, Viterbo, Italy
[5] Euromediterranean Ctr Climate Change, Viterbo, Italy
基金
欧盟地平线“2020”;
关键词
GROSS PRIMARY PRODUCTION; EDDY COVARIANCE MEASUREMENTS; CARBON-DIOXIDE EXCHANGE; WATER-VAPOR EXCHANGE; LEAF RESPIRATION; THERMAL-ACCLIMATION; DARK RESPIRATION; ATMOSPHERIC CO2; LONG-TERM; TEMPERATURE-DEPENDENCE;
D O I
10.1038/s41559-019-0809-2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The global land surface absorbs about a third of anthropogenic emissions each year, due to the difference between two key processes: ecosystem photosynthesis and respiration. Despite the importance of these two processes, it is not possible to measure either at the ecosystem scale during the daytime. Eddy-covariance measurements are widely used as the closest 'quasi-direct' ecosystem-scale observation from which to estimate ecosystem photosynthesis and respiration. Recent research, however, suggests that current estimates may be biased by up to 25%, due to a previously unaccounted for process: the inhibition of leaf respiration in the light. Yet the extent of inhibition remains debated, and implications for estimates of ecosystem-scale respiration and photosynthesis remain unquantified. Here, we quantify an apparent inhibition of daytime ecosystem respiration across the global FLUXNET eddy-covariance network and identify a pervasive influence that varies by season and ecosystem type. We develop partitioning methods that can detect an apparent ecosystem-scale inhibition of daytime respiration and find that diurnal patterns of ecosystem respiration might be markedly different than previously thought. The results call for the re-evaluation of global terrestrial carbon cycle models and also suggest that current global estimates of photosynthesis and respiration may be biased, some on the order of magnitude of anthropogenic fossil fuel emissions.
引用
收藏
页码:407 / +
页数:11
相关论文
共 85 条
[1]  
Amthor J.S., 2001, Terrestrial Global Productivity, P33, DOI DOI 10.1016/B978-012505290-0/50004-1
[2]   The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later [J].
Amthor, JS .
ANNALS OF BOTANY, 2000, 86 (01) :1-20
[3]  
[Anonymous], 2016, COMPUTER AGE STAT IN
[4]   High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric [J].
Atkin, OK ;
Scheurwater, I ;
Pons, TL .
GLOBAL CHANGE BIOLOGY, 2006, 12 (03) :500-515
[5]   Leaf respiration of snow gum in the light and dark. interactions between temperature and irradiance [J].
Atkin, OK ;
Evans, JR ;
Ball, MC ;
Lambers, H ;
Pons, TL .
PLANT PHYSIOLOGY, 2000, 122 (03) :915-923
[6]   Global variability in leaf respiration in relation to climate, plant functional types and leaf traits [J].
Atkin, Owen K. ;
Bloomfield, Keith J. ;
Reich, Peter B. ;
Tjoelker, Mark G. ;
Asner, Gregory P. ;
Bonal, Damien ;
Boenisch, Gerhard ;
Bradford, Matt G. ;
Cernusak, Lucas A. ;
Cosio, Eric G. ;
Creek, Danielle ;
Crous, Kristine Y. ;
Domingues, Tomas F. ;
Dukes, Jeffrey S. ;
Egerton, John J. G. ;
Evans, John R. ;
Farquhar, Graham D. ;
Fyllas, Nikolaos M. ;
Gauthier, Paul P. G. ;
Gloor, Emanuel ;
Gimeno, Teresa E. ;
Griffin, Kevin L. ;
Guerrieri, Rossella ;
Heskel, Mary A. ;
Huntingford, Chris ;
Ishida, Francoise Yoko ;
Kattge, Jens ;
Lambers, Hans ;
Liddell, Michael J. ;
Lloyd, Jon ;
Lusk, Christopher H. ;
Martin, Roberta E. ;
Maksimov, Ayal P. ;
Maximov, Trofim C. ;
Malhi, Yadvinder ;
Medlyn, Belinda E. ;
Meir, Patrick ;
Mercado, Lina M. ;
Mirotchnick, Nicholas ;
Ng, Desmond ;
Niinemets, UElo ;
O'Sullivan, Odhran S. ;
Phillips, Oliver L. ;
Poorter, Lourens ;
Poot, Pieter ;
Prentice, I. Colin ;
Salinas, Norma ;
Rowland, Lucy M. ;
Ryan, Michael G. ;
Sitch, Stephen .
NEW PHYTOLOGIST, 2015, 206 (02) :614-636
[7]   Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature [J].
Ayub, Gohar ;
Smith, Renee A. ;
Tissue, David T. ;
Atkin, Owen K. .
NEW PHYTOLOGIST, 2011, 190 (04) :1003-1018
[8]   SCALING CARBON-DIOXIDE AND WATER-VAPOR EXCHANGE FROM LEAF TO CANOPY IN A DECIDUOUS FOREST .2. MODEL TESTING AND APPLICATION [J].
BALDOCCHI, DD ;
HARLEY, PC .
PLANT CELL AND ENVIRONMENT, 1995, 18 (10) :1157-1173
[9]   Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems [J].
Baldocchi, Dennis .
AUSTRALIAN JOURNAL OF BOTANY, 2008, 56 (01) :1-26
[10]   Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest [J].
Barford, CC ;
Wofsy, SC ;
Goulden, ML ;
Munger, JW ;
Pyle, EH ;
Urbanski, SP ;
Hutyra, L ;
Saleska, SR ;
Fitzjarrald, D ;
Moore, K .
SCIENCE, 2001, 294 (5547) :1688-1691