The J-integral in flexoelectric solids

被引:13
作者
Tian, Xinpeng [1 ]
Li, Qun [1 ]
Deng, Qian [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Aerosp Engn, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Flexoelectricity; Strain gradient; Configurational force; J-integral; Fracture; LATTICE-DYNAMICS APPROACH; ELASTIC DIELECTRICS; POLARIZATION; CRYSTALLINE;
D O I
10.1007/s10704-018-0331-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The flexoelectric effect is a significant electromechanical coupling phenomenon between strain gradients and electric polarization. Since the design of materials with high flexoelectricity should be accompaniedwith stress concentration/intensity, the strength and fracture analysis of flexoelectric materials with large strain gradients is desired. The famous J-integral can be used to characterize the singularity at crack tips and predict the fracture behavior of flexoelectric solids. However, the definition of J-integral in flexoelectric solids is lacked or incomplete in the open literature. In this study, an explicit expression of J-integral associated with material configurational forces is derived from the gradient operation of electric enthalpy density function for centrosymmetric flexoelectric solids, where the electric enthalpy density depends not only on the strain and strain gradient, but also on the polarization and polarization gradient. The path-independence of J-integral in flexoelectric solids is also examined through the Gauss-Green's theorem. Then the derived J-integral is applied to study a cylindrical cavity and a mode III crack problem in flexoelectric solids. The results indicate that, in flexoelectric solids, there is a conservation law of the J-integral. That is, the J-integral defined in a global coordinate system vanishes when the integration contour chosen to calculate the J-integral encloses whole cavity. The present complete expression of J-integral in flexoelectric solids is addressed from the self-consistent theory of flexoelectricity. It corrects the inaccurate definition of J-integral in the previous literature. The J-integral obtained in this paper will provide a useful way to study fracture problems in flexoelectric solids.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 42 条
  • [1] Fracture toughening and toughness asymmetry induced by flexoelectricity
    Abdollahi, Amir
    Peco, Christian
    Millan, Daniel
    Arroyo, Marino
    Catalan, Gustau
    Arias, Irene
    [J]. PHYSICAL REVIEW B, 2015, 92 (09):
  • [2] Revisiting pyramid compression to quantify flexoelectricity: A three-dimensional simulation study
    Abdollahi, Amir
    Millan, Daniel
    Peco, Christian
    Arroyo, Marino
    Arias, Irene
    [J]. PHYSICAL REVIEW B, 2015, 91 (10)
  • [3] Computational evaluation of the flexoelectric effect in dielectric solids
    Abdollahi, Amir
    Peco, Christian
    Millan, Daniel
    Arroyo, Marino
    Arias, Irene
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 116 (09)
  • [4] Flexoelectricity in two-dimensional crystalline and biological membranes
    Ahmadpoor, Fatemeh
    Sharma, Pradeep
    [J]. NANOSCALE, 2015, 7 (40) : 16555 - 16570
  • [5] Plane asymptotic crack-tip solutions in gradient elasticity
    Aravas, N.
    Giannakopoulos, A. E.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (25-26) : 4478 - 4503
  • [6] Plane-Strain Problems for a Class of Gradient Elasticity Models-A Stress Function Approach
    Aravas, Nikolaos
    [J]. JOURNAL OF ELASTICITY, 2011, 104 (1-2) : 45 - 70
  • [7] LATTICE-DYNAMICS APPROACH TO THEORY OF DIATOMIC ELASTIC DIELECTRICS
    ASKAR, A
    LEE, PCY
    [J]. PHYSICAL REVIEW B, 1974, 9 (12): : 5291 - 5299
  • [8] Askar A., 1971, International Journal of Solids and Structures, V7, P523, DOI 10.1016/0020-7683(71)90103-X
  • [9] LATTICE-DYNAMICS APPROACH TO THEORY OF ELASTIC DIELECTRICS WITH POLARIZATION GRADIENT
    ASKAR, A
    LEE, PCY
    CAKMAK, AS
    [J]. PHYSICAL REVIEW B, 1970, 1 (08): : 3525 - &
  • [10] Giant flexoelectricity in polyvinylidene fluoride films
    Baskaran, Sivapalan
    Ramachandran, Narayanan
    He, Xiangtong
    Thiruvannamalai, Sankar
    Lee, Ho Joon
    Heo, Hyun
    Chen, Qin
    Fu, John Y.
    [J]. PHYSICS LETTERS A, 2011, 375 (20) : 2082 - 2084