Differential expression in RNA-seq: A matter of depth

被引:1182
|
作者
Tarazona, Sonia [1 ,2 ]
Garcia-Alcalde, Fernando [1 ]
Dopazo, Joaquin [1 ]
Ferrer, Alberto
Conesa, Ana [1 ]
机构
[1] Ctr Invest Principe Felipe, Bioinformat & Genom Dept, Valencia 46012, Spain
[2] Univ Politecn Valencia, Dept Appl Stat Operat Res & Qual, Valencia 46022, Spain
关键词
TRANSCRIPTIONAL LANDSCAPE; GENE; REPRODUCIBILITY; POLYADENYLATION; GENOME;
D O I
10.1101/gr.124321.111
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing (NGS) technologies are revolutionizing genome research, and in particular, their application to transcriptomics (RNA-seq) is increasingly being used for gene expression profiling as a replacement for microarrays. However, the properties of RNA-seq data have not been yet fully established, and additional research is needed for understanding how these data respond to differential expression analysis. In this work, we set out to gain insights into the characteristics of RNA-seq data analysis by studying an important parameter of this technology: the sequencing depth. We have analyzed how sequencing depth affects the detection of transcripts and their identification as differentially expressed, looking at aspects such as transcript biotype, length, expression level, and fold-change. We have evaluated different algorithms available for the analysis of RNA-seq and proposed a novel approach-NOISeq-that differs from existing methods in that it is data-adaptive and nonparametric. Our results reveal that most existing methodologies suffer from a strong dependency on sequencing depth for their differential expression calls and that this results in a considerable number of false positives that increases as the number of reads grows. In contrast, our proposed method models the noise distribution from the actual data, can therefore better adapt to the size of the data set, and is more effective in controlling the rate of false discoveries. This work discusses the true potential of RNA-seq for studying regulation at low expression ranges, the noise within RNA-seq data, and the issue of replication.
引用
收藏
页码:2213 / 2223
页数:11
相关论文
共 50 条
  • [21] Detecting differential expression from RNA-seq data with expression measurement uncertainty
    Zhang, Li
    Chen, Songcan
    Liu, Xuejun
    FRONTIERS OF COMPUTER SCIENCE, 2015, 9 (04) : 652 - 663
  • [22] Detecting differential expression from RNA-seq data with expression measurement uncertainty
    Li Zhang
    Songcan Chen
    Xuejun Liu
    Frontiers of Computer Science, 2015, 9 : 652 - 663
  • [23] Detecting differential expression from RNA-seq data with expression measurement uncertainty
    Li ZHANG
    Songcan CHEN
    Xuejun LIU
    Frontiers of Computer Science, 2015, 9 (04) : 652 - 663
  • [24] RNA-seq differential expression studies: more sequence or more replication?
    Liu, Yuwen
    Zhou, Jie
    White, Kevin P.
    BIOINFORMATICS, 2014, 30 (03) : 301 - 304
  • [25] A Unified Model for Robust Differential Expression Analysis of RNA-Seq Data
    Liu, Kefei
    Shen, Li
    Jiang, Hui
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 437 - 442
  • [26] Power analysis and sample size estimation for RNA-Seq differential expression
    Ching, Travers
    Huang, Sijia
    Garmire, Lana X.
    RNA, 2014, 20 (11) : 1684 - 1696
  • [27] Data Driven Feature Selection for RNA-Seq Differential Expression Analysis
    Han, Henry
    PATTERN RECOGNITION IN BIOINFORMATICS, PRIB 2014, 2014, 8626 : 114 - 115
  • [28] A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data
    Zhang, Zong Hong
    Jhaveri, Dhanisha J.
    Marshall, Vikki M.
    Bauer, Denis C.
    Edson, Janette
    Narayanan, Ramesh K.
    Robinson, Gregory J.
    Lundberg, Andreas E.
    Bartlett, Perry F.
    Wray, Naomi R.
    Zhao, Qiong-Yi
    PLOS ONE, 2014, 9 (08):
  • [29] LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data
    Bingqing Lin
    Li-Feng Zhang
    Xin Chen
    BMC Genomics, 15
  • [30] Impact of human gene annotations on RNA-seq differential expression analysis
    Yu Hamaguchi
    Chao Zeng
    Michiaki Hamada
    BMC Genomics, 22