Towards miniaturized closed-loop optogenetic stimulation devices

被引:17
作者
Edward, Epsy S. [1 ]
Kouzani, Abbas Z. [1 ]
Tye, Susannah J. [2 ]
机构
[1] Deakin Univ, Sch Engn, Geelong, Vic 3216, Australia
[2] Mayo Clin, Dept Psychiat & Psychol, Rochester, MN 55905 USA
关键词
neural recording; neural stimulation; optogenetics; closed-loop stimulation; miniaturization; portability; NEURAL RECORDING-SYSTEM; DEEP BRAIN-STIMULATION; INTEGRATED-CIRCUIT; SPIKE-DETECTION; WIRELESS; TECHNOLOGIES; INTERFACE; TELEMETRY; DISEASE; NEUROTECHNOLOGIES;
D O I
10.1088/1741-2552/aa7d62
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Electrical brain stimulation provides therapeutic benefits for patients with drug-resistant neurological disorders. It, however, has restricted access to cell-type selectivity which limits its treatment effectiveness. Optogenetics, in contrast, enables precise targeting of a specific cell type which can address the issue with electrical brain stimulation. It, nonetheless, disregards real-time brain responses in delivering optimized stimulation to target cells. Closed-loop optogenetics, on the other hand, senses the difference between normal and abnormal states of the brain, and modulates stimulation parameters to achieve the desired stimulation outcome. Current review articles on closed-loop optogenetics have focused on its theoretical aspects and potential benefits. A review of the recent progress in miniaturized closed-loop optogenetic stimulation devices is thus needed. Approach. This paper presents a comprehensive study on the existing miniaturized closed-loop optogenetic stimulation devices and their internal components. Main results. Hardware components of closed-loop optogenetic stimulation devices including electrode, light-guiding mechanism, optical source, neural recorder, and optical stimulator are discussed. Next, software modules of closed-loop optogenetic stimulation devices including feature extraction, classification, control, and stimulation parameter modulation are described. Then, the existing devices are categorized into open-loop and closed-loop groups, and the combined operation of their neural recorder, optical stimulator, and control approach is discussed. Finally, the challenges in the design and implementation of closed-loop optogenetic stimulation devices are presented, suggestions on how to tackle these challenges are given, and future directions for closed-loop optogenetics are stated. Significance. A generic architecture for closed-loop optogenetic stimulation devices involving both hardware and software perspectives is devised. A comprehensive investigation into the most current miniaturized and tetherless closed-loop optogenetic stimulation devices is given. A detailed comparison of the closed-loop optogenetic stimulation devices is presented.
引用
收藏
页数:21
相关论文
共 106 条
[1]   GFP-specific CD8 T cells enable targeted cell depletion and visualization of T-cell interactions [J].
Agudo, Judith ;
Ruzo, Albert ;
Park, Eun Sook ;
Sweeney, Robert ;
Kana, Veronika ;
Wu, Meng ;
Zhao, Yong ;
Egli, Dieter ;
Merad, Miriam ;
Brown, Brian D. .
NATURE BIOTECHNOLOGY, 2015, 33 (12) :1287-+
[2]   Optetrode: a multichannel readout for optogenetic control in freely moving mice [J].
Anikeeva, Polina ;
Andalman, Aaron S. ;
Witten, Ilana ;
Warden, Melissa ;
Goshen, Inbal ;
Grosenick, Logan ;
Gunaydin, Lisa A. ;
Frank, Loren M. ;
Deisseroth, Karl .
NATURE NEUROSCIENCE, 2012, 15 (01) :163-U204
[3]   Closed-loop optogenetic intervention in mice [J].
Armstrong, Caren ;
Krook-Magnuson, Esther ;
Oijala, Mikko ;
Soltesz, Ivan .
NATURE PROTOCOLS, 2013, 8 (08) :1475-1493
[4]   A Battery-Powered Activity-Dependent Intracortical Microstimulation IC for Brain-Machine-Brain Interface [J].
Azin, Meysam ;
Guggenmos, David J. ;
Barbay, Scott ;
Nudo, Randolph J. ;
Mohseni, Pedram .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (04) :731-745
[5]   LONG-TERM SUPPRESSION OF TREMOR BY CHRONIC STIMULATION OF THE VENTRAL INTERMEDIATE THALAMIC NUCLEUS [J].
BENABID, AL ;
POLLAK, P ;
GERVASON, C ;
HOFFMANN, D ;
GAO, DM ;
HOMMEL, M ;
PERRET, JE ;
DEROUGEMONT, J .
LANCET, 1991, 337 (8738) :403-406
[6]   Long-term treatment with responsive brain stimulation in adults with refractory partial seizures [J].
Bergey, Gregory K. ;
Morrell, Martha J. ;
Mizrahi, Eli M. ;
Goldman, Alica ;
King-Stephens, David ;
Nair, Dileep ;
Srinivasan, Shraddha ;
Jobst, Barbara ;
Gross, Robert E. ;
Shields, Donald C. ;
Barkley, Gregory ;
Salanova, Vicenta ;
Olejniczak, Piotr ;
Cole, Andrew ;
Cash, Sydney S. ;
Noe, Katherine ;
Wharen, Robert ;
Worrell, Gregory ;
Murro, Anthony M. ;
Edwards, Jonathan ;
Duchowny, Michael ;
Spencer, David ;
Smith, Michael ;
Geller, Eric ;
Gwinn, Ryder ;
Skidmore, Christopher ;
Eisenschenk, Stephan ;
Berg, Michel ;
Heck, Christianne ;
Van Ness, Paul ;
Fountain, Nathan ;
Rutecki, Paul ;
Massey, Andrew ;
O'Donovan, Cormac ;
Labar, Douglas ;
Duckrow, Robert B. ;
Hirsch, Lawrence J. ;
Courtney, Tracy ;
Sun, Felice T. ;
Seale, Cairn G. .
NEUROLOGY, 2015, 84 (08) :810-817
[7]   Prosthetic systems for therapeutic optical activation and silencing of genetically targeted neurons [J].
Bernstein, Jacob G. ;
Han, Xue ;
Henninger, Michael A. ;
Ko, Emily Y. ;
Qian, Xiaofeng ;
Franzesi, Giovanni Talei ;
McConnell, Jackie P. ;
Stem, Patrick ;
Desimone, Robert ;
Boyden, Edward S. .
OPTICAL INTERACTIONS WITH TISSUE AND CELLS XIX, 2008, 6854
[8]   Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits [J].
Bernstein, Jacob G. ;
Garrity, Paul A. ;
Boyden, Edward S. .
CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (01) :61-71
[9]   Optogenetic tools for analyzing the neural circuits of behavior [J].
Bernstein, Jacob G. ;
Boyden, Edward S. .
TRENDS IN COGNITIVE SCIENCES, 2011, 15 (12) :592-600
[10]   A wireless microsystem with digital data compression for neural spike recording [J].
Bonfanti, A. ;
Zambra, G. ;
Baranauskas, G. ;
Angotzi, G. N. ;
Maggiolini, E. ;
Semprini, M. ;
Vato, A. ;
Fadiga, L. ;
Spinelli, A. S. ;
Lacaita, A. L. .
MICROELECTRONIC ENGINEERING, 2011, 88 (08) :1672-1675