Square roots of elliptic second order divergence operators on strongly Lipschitz domains:: Lp theory

被引:24
作者
Auscher, P
Tchamitchian, P
机构
[1] Fac Math & Informat, F-80039 Amiens 1, France
[2] CNRS, LAMFA, F-75700 Paris, France
[3] Fac Sci & Tech St Jerome, F-13397 Marseille 20, France
[4] CNRS, LATP, UMR 6632, F-75700 Paris, France
关键词
D O I
10.1007/PL00004487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study L-P estimates for square roots of second order elliptic non necessarily selfadjoint operators in divergence form L = - div (A del) on Lipschitz domains subject to Dirichlet or to Neumann boundary conditions, pursuing our work [4] where we considered operators on R". We obtain among other things parallel toL(1/2)f parallel top less than or equal to c parallel to delf parallel top for all 1 < p < infinity if L is real symmetric and the domain bounded, which is new for 1 < p < 2. We also obtain similar results for perturbations of constant coefficients operators. Our methods rely on a singular integral representation, Calderon-Zygmund theory and quadratic estimates. A feature of this study is the use of a commutator between the resolvent of the Laplacian (Dirichlet and Neumann) and partial derivatives which carries the geometry of the boundary.
引用
收藏
页码:577 / 623
页数:47
相关论文
共 21 条
[1]  
[Anonymous], CULTURAL CRITIQUE
[2]  
Arendt W., 1997, J. Operator Th., V38, P87
[3]  
Auscher P, 2001, LECT NOTES PURE APPL, V215, P15
[4]  
Auscher P, 1997, INDIANA U MATH J, V46, P659
[5]   FUNCTIONAL-CALCULUS FOR A CLASS OF COMPLEX ELLIPTIC-OPERATORS IN DIMENSION ONE (AND APPLICATIONS TO SOME COMPLEX ELLIPTIC-EQUATIONS IN DIMENSION-2) [J].
AUSCHER, P ;
TCHAMITCHIAN, P .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (03) :721-+
[6]  
AUSCHER P, 1998, ASTERISQUE SOC MATH, V249
[7]  
AUSCHER P, 1999, PUBL MAT, V43, P685
[8]  
AUSCHER P, 1999, SQUARE ROOTS 2 ORDER
[9]  
DAVIES E, 1992, HEAT KERNELS SPECTRA
[10]  
DUONG XT, 1999, 1998 WORKSH AN APPL, V37, P15