Microstructure evolution of additively manufactured CoCrFeNiAl0.4 high-entropy alloy under thermo-mechanical processing

被引:13
作者
Li, Qiang [1 ]
Chen, Xiao [2 ]
Chen, Xizhang [1 ,5 ]
Siddiquee, Arshad Noor [3 ]
Deev, Vladislav B. [4 ]
Konovalov, Sergey [5 ]
Wen, Ming [6 ]
机构
[1] Wenzhou Univ, Sch Mech & Elect Engn, Wenzhou 325035, Zhejiang, Peoples R China
[2] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266580, Shandong, Peoples R China
[3] Jamia Millia Islamia, Dept Mech Engn, New Delhi, India
[4] Natl Univ Sci & Technol MISIS, Dept Met Forming, Moscow, Russia
[5] Samara Natl Res Univ, Dept Met Technol & Aviat Mat, 34 Moskovskoye Shosse, Samara 443086, Russia
[6] Kunming Inst Precious Met, Yunnan Key Lab Precious Metall Mat, Kunming 650106, Yunnan, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2022年 / 16卷
基金
中国国家自然科学基金;
关键词
Thermo-mechanical processing; Powder plasma arc additive; manufacturing; Work hardening rate; Texture evolution; Recrystallization; MECHANICAL-PROPERTIES; GRAIN-SIZE; TEXTURE EVOLUTION; TWIP STEEL; DEFORMATION; STRENGTH; BEHAVIOR; COLD; RECRYSTALLIZATION; DISLOCATION;
D O I
10.1016/j.jmrt.2021.12.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microstructure and texture evolution during thermo-mechanical processing (TMP) and their relationship with the mechanical properties in the non-equiatomic CoCrFeNiAl0.4 high-entropy alloy (HEA) were investigated. In this work, a combination of cold rolling and annealing technology was used to investigate the HEA which has been fabricated by powder plasma arc additive manufacturing (PPA-AM) in the deformed and recrystallized states. Microstructure and texture analysis were performed by electron backscatter diffraction. The mechanical properties were evaluated using static tensile testing. It was substantiated that annealing twins facilitates the transition from the cube texture to the shear texture and has a great influence on the evolution of texture after TMP. Based on the research of CoCrFeNiAl0.4 high-entropy alloy, thermo-mechanical processing under appropriate conditions can increase the work hardening rate, but the work hardening rate is relatively stable under 30%-45% plastic deformation. The correlation during TMP between mechanical properties and work hardening, texture evolution, and recrystallization was discussed. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:442 / 450
页数:9
相关论文
共 50 条
  • [21] Dynamic spall properties of an additively manufactured, high-entropy alloy (CoCrFeMnNi)
    Euser, V. K.
    Mangan, A. S.
    Jones, D. R.
    Martinez, D. T.
    Steckley, T. E.
    Agrawal, A. K.
    Thoma, D. J.
    Fensin, S. J.
    MATERIALIA, 2024, 33
  • [22] Effect of cold-rolling and annealing temperature on microstructure, texture evolution and mechanical properties of FeCoCrNiMn high-entropy alloy
    Liao, Luhai
    Cheng, Yifan
    Dai, Shang
    Khan, Muhammad Abubaker
    Zhang, He
    Li, Fengguang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 683 - 697
  • [23] Heterogeneous microstructure and mechanical properties of carbon-doped FeCoCrNiMn high-entropy alloy
    Guo, Lin
    Gu, Ji
    Dai, Yi-long
    Lin, Jian-guo
    Song, Min
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2024, 34 (06) : 1893 - 1907
  • [24] Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy
    Chen, Hu
    Chen, Wei
    Liu, Xiaoqiang
    Tang, Qunhua
    Xie, Yanchong
    Dai, Pinqiang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 719 : 192 - 198
  • [25] Effect of thermo-mechanical treatment on microstructure and mechanical properties of wire-arc additively manufactured Al-Cu alloy
    Zhang, Tao
    Qin, Zhen-yang
    Gong, Hai
    Wu, Yun-xin
    Chen, Xin
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2024, 31 (07) : 2181 - 2193
  • [26] Evolution of microstructure and mechanical properties during annealing of heavily rolled AlCoCrFeNi2.1 eutectic high-entropy alloy
    Lozinko, Adrianna
    Gholizadeh, Reza
    Zhang, Yubin
    Klement, Uta
    Tsuji, Nobuhiro
    Mishin, Oleg, V
    Guo, Sheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 833
  • [27] Homogenization heat treatment for an additively manufactured precipitation-hardening high-entropy alloy
    Liu, Zhi-Yuan
    Zhao, Xin-Yi
    Wu, Yao-Wen
    Chen, Qiang
    Yang, Bao-Hua
    Wang, Pei
    Chen, Zhang-Wei
    Yang, Can
    RARE METALS, 2022, 41 (08) : 2853 - 2863
  • [28] Hydrogen embrittlement of additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy
    Wan, Di
    Guan, Shuai
    Wang, Dong
    Lu, Xu
    Ma, Jun
    CORROSION SCIENCE, 2022, 195
  • [29] Microstructural evolution and mechanical characterization for the AlCoCrFeNi2.1 eutectic high-entropy alloy under different temperatures
    Li, Yafei
    Zhou, Jiahe
    Liu, Yifei
    Lu, Chuanyang
    Shi, Lei
    Zheng, Wenjian
    Jin, Weiya
    Gao, Zengliang
    Yang, Jianguo
    He, Yanming
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (05) : 1881 - 1892
  • [30] Microstructure evolution and enhanced mechanical properties of additively manufactured CrCoNi medium-entropy alloy composites
    Xue, Pengsheng
    Zhu, Lida
    Xu, Peihua
    Lu, Hao
    Wang, Shuhao
    Yang, Zhichao
    Ning, Jinsheng
    Sing, Swee Leong
    Ren, Yuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 928