Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust

被引:398
作者
Seo, Dongjin [1 ]
Neely, Ryan M. [2 ]
Shen, Konlin [1 ]
Singhal, Utkarsh [1 ]
Alon, Elad [1 ]
Rabaey, Jan M. [1 ]
Carmena, Jose M. [1 ,2 ,3 ]
Maharbiz, Michel M. [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, UCB UCSF Joint Grad Program Bioengn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
VAGUS NERVE; DEVICE; BLADDER;
D O I
10.1016/j.neuron.2016.06.034
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The emerging field of bioelectronic medicine seeks methods for deciphering and modulating electrophysiological activity in the body to attain therapeutic effects at target organs. Current approaches to interfacing with peripheral nerves and muscles rely heavily on wires, creating problems for chronic use, while emerging wireless approaches lack the size scalability necessary to interrogate small-diameter nerves. Furthermore, conventional electrode-based technologies lack the capability to record from nerves with high spatial resolution or to record independently from many discrete sites within a nerve bundle. Here, we demonstrate neural dust, a wireless and scalable ultrasonic backscatter system for powering and communicating with implanted bioelectronics. We show that ultrasound is effective at delivering power to mm-scale devices in tissue; likewise, passive, battery-less communication using backscatter enables high-fidelity transmission of electromyogram (EMG) and electroneurogram (ENG) signals from anesthetized rats. These results highlight the potential for an ultrasound-based neural interface system for advancing future bioelectronics-based therapies.
引用
收藏
页码:529 / 539
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 2011, 2011 DESIGN AUTOMATI, DOI DOI 10.1109/DATE.2011.5763123
[2]  
[Anonymous], ACOUSTIC WAVES DEVIC
[3]  
Bertrand A, 2014, IEEE ENG MED BIO, P2625, DOI 10.1109/EMBC.2014.6944161
[4]   High-frequency electrical conduction block of mammalian peripheral motor nerve [J].
Bhadra, N ;
Kilgore, KL .
MUSCLE & NERVE, 2005, 32 (06) :782-790
[5]   A 4.78 mm2 Fully-Integrated Neuromodulation SoC Combining 64 Acquisition Channels With Digital Compression and Simultaneous Dual Stimulation [J].
Biederman, William ;
Yeager, Daniel J. ;
Narevsky, Nathan ;
Leverett, Jaclyn ;
Neely, Ryan ;
Carmena, Jose M. ;
Alon, Elad ;
Rabaey, Jan M. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (04) :1038-1047
[6]   A Fully-Integrated, Miniaturized (0.125 mm2) 10.5 μW Wireless Neural Sensor [J].
Biederman, William ;
Yeager, Daniel J. ;
Narevsky, Nathan ;
Koralek, Aaron C. ;
Carmena, Jose M. ;
Alon, Elad ;
Rabaey, Jan M. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (04) :960-970
[7]   Bioelectronic medicines: a research roadmap [J].
Birmingham, Karen ;
Gradinaru, Viviana ;
Anikeeva, Polina ;
Grill, Warren M. ;
Pikov, Victor ;
McLaughlin, Bryan ;
Pasricha, Pankaj ;
Weber, Douglas ;
Ludwig, Kip ;
Famm, Kristoffer .
NATURE REVIEWS DRUG DISCOVERY, 2014, 13 (06) :399-400
[8]   A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve [J].
Boretius, Tim ;
Badia, Jordi ;
Pascual-Font, Aran ;
Schuettler, Martin ;
Navarro, Xavier ;
Yoshida, Ken ;
Stieglitz, Thomas .
BIOSENSORS & BIOELECTRONICS, 2010, 26 (01) :62-69
[9]   A mm-Sized Implantable Medical Device (IMD) With Ultrasonic Power Transfer and a Hybrid Bi-Directional Data Link [J].
Charthad, Jayant ;
Weber, Marcus J. ;
Chang, Ting Chia ;
Arbabian, Amin .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (08) :1741-1753
[10]   An implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: A multicenter trial [J].
Creasey, GH ;
Grill, JH ;
Korsten, M ;
Sang, H ;
Betz, R ;
Anderson, R ;
Walter, J .
ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2001, 82 (11) :1512-1519