HIGHLY ACCURATE AUTOMATED PATIENT-SPECIFIC 3D BONE POSE AND SCALE ESTIMATION USING BI-PLANAR POSE-INVARIANT PATCHES IN A CNN-BASED 3D/2D REGISTRATION FRAMEWORK

被引:1
|
作者
Khameneh, Nahid Babazadeh [1 ,2 ]
Vazquez, Carlos [1 ]
Cresson, Thierry [1 ,2 ]
Lavoie, Frederic [3 ]
de Guise, Jacques [1 ,2 ]
机构
[1] Ecole Technol Super, Lab Rech Imagerie & Orthoped LIO, Montreal, PQ, Canada
[2] Ctr Rech CHUM, Montreal, PQ, Canada
[3] Ctr Hosp Univ Montreal CHUM, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
7DOF registration; convolutional neural networks (CNN); 3D/2D similarity registration; 2D bi-planar X-rays; RECONSTRUCTION; FEMUR;
D O I
10.1109/ISBI48211.2021.9433843
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper proposes an automatic CNN-based 3D/2D registration method to achieve highly accurate and robust seven degrees of freedom (7DOF) pose and isotropic scale of a generic 3D model. This step is a key enabler for reconstructing a patient-specific 3D bone surface model from a wide range of EOS (R) 2D bi-planar X-rays acquired with various fields of view and patients' orientations. Based on a coarse-to-fine strategy. first a CNN-based semantic segmentation followed by a PCA-based registration are used to roughly locate the bone. Similarity in pose-invariant local patches using CNN regression models is used to refine the 3D pose. The accuracy of the method is validated on 60 bi-planar X-rays. The mean of Mean Absolute pose Errors (MAE) of 3D translations, 3D rotations, and isotropic scaling are 0.19 mm, 0.33 degrees, and 0.05(%), respectively. The success rate is of 100 % at MAE lower than 1 mm. 1 degrees. and 0.1 (%).
引用
收藏
页码:681 / 684
页数:4
相关论文
共 50 条
  • [1] Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting
    Jourabloo, Amin
    Liu, Xiaoming
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2017, 124 (02) : 187 - 203
  • [2] Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting
    Amin Jourabloo
    Xiaoming Liu
    International Journal of Computer Vision, 2017, 124 : 187 - 203
  • [3] 3D pose estimation of fracture femur based on bi-planar digital radiographs
    Zhang, Bin
    Sun, Jinwei
    Sun, Shaobin
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2013, 34 (01): : 140 - 146
  • [4] Initial Pose Estimation Method in 2D/3D Registration
    Sun, Tao
    Guo, Ke
    Liu, Chuanba
    Zhang, Tao
    Song, Yimin
    Ma, Xinlong
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (02): : 143 - 150
  • [5] Age Estimation via Pose-Invariant 3D Face Alignment Feature in 3 Streams of CNN
    Sun, Li
    Qiu, Song
    Li, Qingli
    Liu, Hongying
    Zhou, Mei
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 172 - 183
  • [6] 3D Human Pose Estimation=2D Pose Estimation plus Matching
    Chen, Ching-Hang
    Ramanan, Deva
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5759 - 5767
  • [7] Pose-invariant 3d object recognition using linear combination of 2d views and evolutionary optimisation
    Zografos, Vasileios
    Buxton, Bernard F.
    ICCTA 2007: INTERNATIONAL CONFERENCE ON COMPUTING: THEORY AND APPLICATIONS, PROCEEDINGS, 2007, : 645 - +
  • [8] Pose-invariant face recognition using a 3D deformable model
    Lee, MW
    Ranganath, S
    PATTERN RECOGNITION, 2003, 36 (08) : 1835 - 1846
  • [9] Pose-invariant 3D face recognition using half face
    Liang, Yan
    Zhang, Yun
    Zeng, Xian-Xian
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 57 : 84 - 90
  • [10] Pose-Invariant 3D Proximal Femur Estimation through Bi-planar Image Segmentation with Hierarchical Higher-Order Graph-Based Priors
    Wang, Chaohui
    Boussaid, Haithem
    Simon, Loic
    Lazennec, Jean-Yves
    Paragios, Nikos
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT III, 2011, 6893 : 346 - +