On approximation by a class of new Bernstein type operators

被引:18
作者
Deo, Naokant [1 ]
Noor, Muhammad Aslam [2 ]
Siddiqui, M. A. [3 ]
机构
[1] Delhi Coll Engn, Dept Appl Math, Delhi 110042, India
[2] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
[3] Govt VYTPG Autonomous Coll, Dept Math, Durg, CG, India
关键词
Bernstein operators; linear combinations;
D O I
10.1016/j.amc.2007.12.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a new type of the classical Bernstein operators where the function is evaluated at intervals [0; 1- 1/n+1]. We also make extensive study simultaneous approximation by the linear combination L(n)(f, k, x) of these new Bernstein type operators L(n)(f). At the end of this paper we have given an other modi. cation of these operators. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:604 / 612
页数:9
相关论文
共 18 条
[1]   ON 2-DIMENSIONAL BERNSTEIN POLYNOMIALS [J].
BUTZER, PL .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1953, 5 (01) :107-113
[2]  
CHENEY EW, 1964, RIV MAT U PARMA, V5, P77
[3]  
Deo N, 2006, MAT VESTN, V58, P19
[4]   APPROXIMATION OF INTEGRABLE FUNCTIONS OVER [0,1] BY MODIFIED BERNSTEIN POLYNOMIALS [J].
DERRIENNIC, MM .
JOURNAL OF APPROXIMATION THEORY, 1981, 31 (04) :325-343
[5]   APPROXIMATION OF FUNCTIONS BY POLYNOMIALS IN C[-1, 1] [J].
DITZIAN, Z ;
JIANG, D .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (05) :924-940
[6]   DIRECT ESTIMATE FOR BERNSTEIN POLYNOMIALS [J].
DITZIAN, Z .
JOURNAL OF APPROXIMATION THEORY, 1994, 79 (01) :165-166
[7]  
Durrmeyer J. L., 1967, Une formule d'inversion de la transformee de Laplace: Applications a la theorie des moments These de 3e cycle
[8]  
Gupta V, 1988, B SOC MATH BELG B, VB40, P61
[9]  
Gupta V., 2003, Riv. Mat. Univ. Parma, V7, P9
[10]  
Gupta V., 2004, INT J MATH MATH SCI, V71, P3951