Infrared Image Colorization Network using Variational AutoEncoder

被引:2
作者
Kim, Heyongyu [1 ]
Kim, Jonghyun [1 ]
Kim, Joongkyu [1 ]
机构
[1] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16419, South Korea
来源
2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC) | 2021年
基金
新加坡国家研究基金会;
关键词
NIR-to-RGB; Colorization; Variational Auto-Encoder;
D O I
10.1109/ITC-CSCC52171.2021.9605698
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel method for colorizing the near-infrared (NIR) images. Recent deep learning based approaches for NIR colorization utilized an auto-encoder structure to map a single channel to the color domain. However, these methods only provide latent codes of a NIR image using an encoder structure, which simply vectorizes an input image to a latent vector. In this vectorization, all semantic information is mutually considered although each latent code represents independent information. To tackle this issue, we propose a NIR colorization network using variational auto-encoder. This network encodes a NIR image into latent codes with probabilistic distributions. Moreover, we embed a novel correlation module to interactively consider luminance and chrominance features. It facilitates the proposed network to generate better textures and color information. Our model achieves comparable performances on the large-scale dataset: video surveillance in a day (VSIAD).
引用
收藏
页数:4
相关论文
共 16 条
[1]   Deep Colorization [J].
Cheng, Zezhou ;
Yang, Qingxiong ;
Sheng, Bin .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :415-423
[2]  
Dong ZY, 2019, CHIN AUTOM CONGR, P1011, DOI [10.1109/CAC48633.2019.8996588, 10.1109/cac48633.2019.8996588]
[3]  
Dong ZY, 2018, IEEE IMAGE PROC, P2242, DOI 10.1109/ICIP.2018.8451230
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[6]   Image-to-Image Translation with Conditional Adversarial Networks [J].
Isola, Phillip ;
Zhu, Jun-Yan ;
Zhou, Tinghui ;
Efros, Alexei A. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5967-5976
[7]   Perceptual Losses for Real-Time Style Transfer and Super-Resolution [J].
Johnson, Justin ;
Alahi, Alexandre ;
Li Fei-Fei .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :694-711
[8]  
Limmer M, 2016, 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), P61, DOI [10.1109/ICMLA.2016.114, 10.1109/ICMLA.2016.0019]
[9]  
Kingma DP, 2014, Arxiv, DOI [arXiv:1312.6114, DOI 10.48550/ARXIV.1312.6114, 10.48550/arXiv.1312.6114]
[10]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241