Controlled chemical etching leads to efficient silicon-bismuth interface for photoelectrochemical CO2 reduction to formate

被引:37
作者
Ding, P. [1 ]
Hu, Y. [1 ]
Deng, J. [1 ]
Chen, J. [1 ]
Zha, C. [1 ]
Yang, H. [1 ]
Han, N. [1 ]
Gong, Q. [1 ]
Li, L. [1 ]
Wang, T. [1 ]
Zhao, X. [1 ]
Li, Y. [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Formate; Photocathode; CARBON-DIOXIDE; ELECTRODES; CATALYSTS;
D O I
10.1016/j.mtchem.2018.10.009
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photoelectrochemical (PEC) reduction of CO2 to useful chemical feedstocks or fuels is desirable but challenging. Its performance improvement requires not only the development of suitable semiconductors and cocatalysts but also the design of efficient semiconductor-cocatalyst interface to facilitate the rapid charge transfer. Many efforts have been undertaken on the former aspect, whereas less attention is paid on the latter. In this study, we report that Bi3+-assisted chemical etching of Si wafers affords efficient and robust Si-Bi interface for high-performance PEC CO2 reduction. Thus-formed Si/Bi photocathodes exhibit positive onset potential, large photocurrent density (similar to 10 mA/cm(2) under 0.5 sun), and high formate Faradaic efficiency (up to 90%). In addition, we demonstrate that the photocurrent density can be further enhanced to similar to 12 mA/cm(2) by patterning the photocathode using photolithography to expose one-third of the Si surface without noticeably compromising the formate selectivity. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:80 / 85
页数:6
相关论文
共 34 条
[1]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[2]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[3]   Photoelectroreduction of Building-Block Chemicals [J].
Chen, Fengjiao ;
Cui, Wei ;
Zhang, Jie ;
Wang, Yeyun ;
Zhou, Junhua ;
Hu, Yongpan ;
Li, Yanguang ;
Lee, Shuit-Tong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (25) :7181-7185
[4]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[5]  
Esposito DV, 2013, NAT MATER, V12, P562, DOI [10.1038/nmat3626, 10.1038/NMAT3626]
[6]   REDUCTION OF CO2 ON N-GAAS ELECTRODES AND SELECTIVE METHANOL SYNTHESIS [J].
FRESE, KW ;
CANFIELD, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1984, 131 (11) :2518-2522
[7]   Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution [J].
Gong, Qiufang ;
Wang, Yu ;
Hu, Qi ;
Zhou, Jigang ;
Feng, Renfei ;
Duchesne, Paul N. ;
Zhang, Peng ;
Chen, Fengjiao ;
Han, Na ;
Li, Yafei ;
Jin, Chuanhong ;
Li, Yanguang ;
Lee, Shuit-Tong .
NATURE COMMUNICATIONS, 2016, 7
[9]   Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate [J].
Han, Na ;
Wang, Yu ;
Yang, Hui ;
Deng, Jun ;
Wu, Jinghua ;
Li, Yafei ;
Li, Yanguang .
NATURE COMMUNICATIONS, 2018, 9
[10]   Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction [J].
Han, Na ;
Wang, Yu ;
Ma, Lu ;
Wen, Jianguo ;
Li, Jing ;
Zheng, Hechuang ;
Nie, Kaiqi ;
Wang, Xinxia ;
Zhao, Feipeng ;
Li, Yafei ;
Fan, Jian ;
Zhong, Jun ;
Wu, Tianpin ;
Miller, Dean J. ;
Lu, Jun ;
Lee, Shuit-Tong ;
Li, Yanguang .
CHEM, 2017, 3 (04) :652-664