A Petrov-Galerkin method with quadrature for elliptic boundary value problems

被引:12
作者
Bialecki, B [1 ]
Ganesh, M
Mustapha, K
机构
[1] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[2] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[3] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
elliptic boundary value problems; Petrov-Galerkin method; splines; Gauss quadrature;
D O I
10.1093/imanum/24.1.157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyse a fully discrete Petrov-Galerkin method with quadrature, for solving second-order, variable coefficient, elliptic boundary value problems on rectangular domains. In our scheme, the trial space consists of C-2 splines of degree r greater than or equal to 3, the test space consists of C-0 splines of degree r - 2, and we use composite (r - 1)-point Gauss quadrature. We show existence and uniqueness of the approximate solution and establish optimal order error bounds in H-2, H-1 and L-2 norms.
引用
收藏
页码:157 / 177
页数:21
相关论文
共 18 条
[1]  
[Anonymous], COMPUTATIONAL ACOUST
[2]  
[Anonymous], COMPUTATIONAL ATOMIC
[3]  
[Anonymous], COMPUTATIONAL ATOMIC
[4]   Convergence analysis of orthogonal spline collocation for elliptic boundary value problems [J].
Bialecki, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :617-631
[5]   Orthogonal spline collocation methods for partial differential equations [J].
Bialecki, B ;
Fairweather, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 128 (1-2) :55-82
[6]   ALTERNATING DIRECTION MULTISTEP METHODS FOR PARABOLIC PROBLEMS ITERATIVE STABILIZATION [J].
BRAMBLE, JH ;
EWING, RE ;
LI, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (04) :904-919
[7]   BOUNDS FOR A CLASS OF LINEAR FUNCTIONALS WITH APPLICATIONS TO HERMITE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :362-&
[8]  
DEBOOR C, 1966, THESIS U MICHIGAN
[9]  
DOUGLAS J, 1977, RAIRO-ANAL NUMER-NUM, V11, P3
[10]  
DOUGLAS J, 1974, LECT NOTES MATH, V385