Spectrally Resolved Surface-Enhanced Raman Scattering Imaging Reveals Plasmon-Mediated Chemical Transformations

被引:14
|
作者
de Albuquerque, Carlos Diego L. [1 ,2 ]
Zoltowski, Chelsea M. M. [1 ]
Scarpitti, Brian T. T. [1 ]
Shoup, Deben N. N. [1 ]
Schultz, Zachary D. D. [1 ]
机构
[1] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA
[2] Basque Res & Technol Alliance BRTA, CIC BiomaGUNE, San Sebastian 20014, Spain
来源
ACS NANOSCIENCE AU | 2021年 / 1卷 / 01期
关键词
SERS; plasmonics; super-resolution; electron transfer; nanoparticles; Raman; spectroscopy; microscopy; NANOSPHERE LITHOGRAPHY; HOT-CARRIER; SERS; SPECTROSCOPY; POTENTIALS; MOLECULES; DIMERS; SILVER; CELLS;
D O I
10.1021/acsnanoscienceau.1c00031
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Challenges investigatingmolecules on plasmonic nanostructureshave limited understanding of these interactions. However, the chemicallyspecific information in the surface-enhanced Raman scattering (SERS)spectrum can identify perturbations in the adsorbed molecules to provideinsight relevant to applications in sensing, catalysis, and energyconversion. Here, we demonstrate spectrally resolved SERS imaging,to simultaneously image and collect the SERS spectra from moleculesadsorbed on individual nanoparticles. We observe intensity and frequencyfluctuations in the SERS signal on the time scale of tens of millisecondsfrom n-mercaptobenzoic acid (MBA) adsorbed to goldnanoparticles. The SERS signal fluctuations correlate with densityfunctional theory calculations of radicals generated by the interactionbetween MBA and plasmon-generated hot electrons. Applying localizationmicroscopy to the data provides a super-resolution spectrally resolvedmap that indicates the plasmonic-induced molecular charging occurson the extremities of the nanoparticles, where the localized electromagneticfield is reported to be most intense.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [21] A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device
    Yih, JN
    Chen, SJ
    Huang, KT
    Su, YT
    Lin, GY
    PLASMONICS IN BIOLOGY AND MEDICINE, 2004, 5327 : 5 - 9
  • [22] Surface Plasmon Resonances of Metallic Nanostars/Nanoflowers for Surface-Enhanced Raman Scattering
    Vincenzo Giannini
    Rogelio Rodríguez-Oliveros
    Jose A. Sánchez-Gil
    Plasmonics, 2010, 5 : 99 - 104
  • [23] Inhibition Assay of Yeast Cell Walls by Plasmon Resonance Rayleigh Scattering and Surface-Enhanced Raman Scattering Imaging
    Syamala, Kiran Manikantan
    Abe, Hiroko
    Fujita, Yasuko
    Tomimoto, Kazuya
    Biju, Vasudevanpillai
    Ishikawa, Mitsuru
    Ozaki, Yukihiro
    Itoh, Tamitake
    LANGMUIR, 2012, 28 (24) : 8952 - 8958
  • [24] Surface-enhanced Raman scattering and Plasmon effect for enzymatic bionanocomplexes characterization
    Wojnarowska-Nowak, Renata
    Polit, Jacek
    Broda, Daniel
    Bobitski, Yaroslaw
    Starowicz, Zbigniew
    Gonchar, Mykhailo
    Sheregii, E. M.
    INTERNATIONAL CONFERENCE ON SEMICONDUCTOR NANOSTRUCTURES FOR OPTOELECTRONICS AND BIOSENSORS (IC SENOB 2016), 2017, 133
  • [25] Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering
    Perney, N. M. B.
    de Abajo, F. J. Garcia
    Baumberg, J. J.
    Tang, A.
    Netti, M. C.
    Charlton, M. D. B.
    Zoorob, M. E.
    PHYSICAL REVIEW B, 2007, 76 (03)
  • [26] Surface-Enhanced Raman Scattering
    Culha, Mustafa
    Lavrik, Nickolay
    Cullum, Brian M.
    Astilean, Simion
    JOURNAL OF NANOTECHNOLOGY, 2012, 2012
  • [27] Surface-enhanced Raman scattering
    Vo-Dinh, Tuan
    Yan, Fei
    Optical Chemical Sensors, 2006, 224 : 239 - 259
  • [28] Surface-enhanced Raman scattering
    Kneipp, Katrin
    PHYSICS TODAY, 2007, 60 (11) : 40 - 46
  • [29] Surface-enhanced Raman scattering
    Graham, Duncan
    van Duyne, Richard
    Ren, Bin
    ANALYST, 2016, 141 (17) : 4995 - 4995
  • [30] Surface-enhanced Raman scattering
    Campion, A
    Kambhampati, P
    CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) : 241 - 250