Spectrally Resolved Surface-Enhanced Raman Scattering Imaging Reveals Plasmon-Mediated Chemical Transformations

被引:14
|
作者
de Albuquerque, Carlos Diego L. [1 ,2 ]
Zoltowski, Chelsea M. M. [1 ]
Scarpitti, Brian T. T. [1 ]
Shoup, Deben N. N. [1 ]
Schultz, Zachary D. D. [1 ]
机构
[1] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA
[2] Basque Res & Technol Alliance BRTA, CIC BiomaGUNE, San Sebastian 20014, Spain
来源
ACS NANOSCIENCE AU | 2021年 / 1卷 / 01期
关键词
SERS; plasmonics; super-resolution; electron transfer; nanoparticles; Raman; spectroscopy; microscopy; NANOSPHERE LITHOGRAPHY; HOT-CARRIER; SERS; SPECTROSCOPY; POTENTIALS; MOLECULES; DIMERS; SILVER; CELLS;
D O I
10.1021/acsnanoscienceau.1c00031
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Challenges investigatingmolecules on plasmonic nanostructureshave limited understanding of these interactions. However, the chemicallyspecific information in the surface-enhanced Raman scattering (SERS)spectrum can identify perturbations in the adsorbed molecules to provideinsight relevant to applications in sensing, catalysis, and energyconversion. Here, we demonstrate spectrally resolved SERS imaging,to simultaneously image and collect the SERS spectra from moleculesadsorbed on individual nanoparticles. We observe intensity and frequencyfluctuations in the SERS signal on the time scale of tens of millisecondsfrom n-mercaptobenzoic acid (MBA) adsorbed to goldnanoparticles. The SERS signal fluctuations correlate with densityfunctional theory calculations of radicals generated by the interactionbetween MBA and plasmon-generated hot electrons. Applying localizationmicroscopy to the data provides a super-resolution spectrally resolvedmap that indicates the plasmonic-induced molecular charging occurson the extremities of the nanoparticles, where the localized electromagneticfield is reported to be most intense.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [21] Topology optimization of surface-enhanced Raman scattering substrates
    Pan, Ying
    Christiansen, Rasmus E.
    Michon, Jerome
    Hu, Juejun
    Johnson, Steven G.
    APPLIED PHYSICS LETTERS, 2021, 119 (06)
  • [22] Gapping into Ultrahigh Surface-Enhanced Raman Scattering Amplification
    Loh, Kang Yong
    Liu, Xiaogang
    ACS CENTRAL SCIENCE, 2018, 4 (02) : 137 - 139
  • [23] Surface-enhanced Raman scattering: facts and inline trends
    Hossain, Mohammad Kamal
    Ozaki, Yukihiro
    CURRENT SCIENCE, 2009, 97 (02): : 192 - 201
  • [24] Surface-enhanced Raman scattering imaging using noble metal nanoparticles
    Wilson, Andrew J.
    Willets, Katherine A.
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2013, 5 (02) : 180 - 189
  • [25] Surface-enhanced Raman scattering for in vivo imaging: the future looks BRIGHT?
    Gandra, Naveen
    Singamaneni, Srikanth
    NANOMEDICINE, 2013, 8 (03) : 317 - 320
  • [26] Spontaneous Raman and Surface-Enhanced Raman Scattering Bioimaging
    Lin, Li
    Ye, Jian
    OPTICAL IMAGING IN HUMAN DISEASE AND BIOLOGICAL RESEARCH, 2021, 1355 : 177 - 195
  • [27] Development and Application of Surface-Enhanced Raman Scattering (SERS)
    Huang, Zhenkai
    Peng, Jianping
    Xu, Liguo
    Liu, Peijiang
    NANOMATERIALS, 2024, 14 (17)
  • [28] Effect of chemical surface modification on dendritic gold in surface-enhanced Raman scattering-active substrates
    Chang, Chia-Yu
    Hsieh, Yun-Ching
    Huang, Yung-Yi
    Wang, Yun-Jie
    Chen, Yu-Mei
    Huang, Yu-Bin
    Hung, Wei-Hsiu
    Lai, Ying-Huang
    JOURNAL OF RAMAN SPECTROSCOPY, 2019, 50 (06) : 818 - 825
  • [29] Raman and surface-enhanced Raman scattering (SERS) biosensing
    Prochazka, M.
    OPTICAL SENSORS 2013, 2013, 8774
  • [30] Molecular dynamics study of plasmon-mediated chemical transformations
    Wu, Xiaoyan
    van der Heide, Tammo
    Wen, Shizheng
    Frauenheim, Thomas
    Tretiak, Sergei
    Yam, ChiYung
    Zhang, Yu
    CHEMICAL SCIENCE, 2023, 14 (18) : 4714 - 4723