Stochastic Integration in Banach Spaces - a Survey

被引:0
作者
van Neerven, Jan [1 ]
Veraar, Mark [1 ]
Weis, Lutz [2 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2600 GA Delft, Netherlands
[2] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
来源
STOCHASTIC ANALYSIS: A SERIES OF LECTURES | 2015年 / 68卷
关键词
Stochastic integration; martingale type; UMD Banach spaces; gamma-radonifying operators; Malliavin calculus; R-boundedness; stochastic maximal regularity; MARTINGALE DIFFERENCE-SEQUENCES; FOURIER MULTIPLIER THEOREMS; L-P-REGULARITY; EVOLUTION EQUATIONS; MALLIAVIN CALCULUS; VALUED PROCESSES; FORMULA; COVARIATION; SPDES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a brief survey of the theory of stochastic integration in Banach spaces. Expositions of the stochastic integrals in martingale type 2 spaces and UMD spaces are presented, as well as some applications of the latter to vector-valued Malliavin calculus and the stochastic maximal regularity problem. A new proof of the stochastic maximal regularity theorem is included.
引用
收藏
页码:297 / 332
页数:36
相关论文
共 50 条
[31]   UMD Banach spaces and square functions associated with heat semigroups for Schrodinger, Hermite and Laguerre operators [J].
Betancor, Jorge J. ;
Castro, Alejandro J. ;
Farina, Juan C. ;
Rodriguez-Mesa, Lourdes .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (04) :410-435
[32]   Stochastic integration of operator-valued functions with respect to Banach space-valued Brownian motion [J].
van Neerven, J. M. A. M. ;
Weis, L. .
POTENTIAL ANALYSIS, 2008, 29 (01) :65-88
[33]   Martingale decompositions and weak differential subordination in UMD Banach spaces [J].
Yaroslavtsev, Ivan S. .
BERNOULLI, 2019, 25 (03) :1659-1689
[34]   On stochastic integration for volatility modulated Levy-driven Volterra processes [J].
Barndorff-Nielsen, Ole E. ;
Benth, Fred Espen ;
Pedersen, Jan ;
Veraart, Almut E. D. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) :812-847
[35]   Stochastic integration with respect to Volterra processes [J].
Decreusefond, L .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (02) :123-149
[36]   A discrete framework for the interpolation of Banach spaces [J].
Lindemulder, Nick ;
Lorist, Emiel .
ADVANCES IN MATHEMATICS, 2024, 440
[37]   Notion of quadratic variation in Banach spaces [J].
Di Girolami, Cristina .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2024, 42 (04) :674-701
[38]   Domains of accretive operators in Banach spaces [J].
Garcia-Falset, Jesus ;
Muniz-Perez, Omar ;
Reich, Simeon .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (02) :325-336
[39]   Stochastic flows and geometric analysis on path spaces [J].
Elworthy, K. David .
PROBABILISTIC APPROACH TO GEOMETRY, 2010, 57 :61-78