Stochastic Integration in Banach Spaces - a Survey

被引:0
作者
van Neerven, Jan [1 ]
Veraar, Mark [1 ]
Weis, Lutz [2 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2600 GA Delft, Netherlands
[2] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
来源
STOCHASTIC ANALYSIS: A SERIES OF LECTURES | 2015年 / 68卷
关键词
Stochastic integration; martingale type; UMD Banach spaces; gamma-radonifying operators; Malliavin calculus; R-boundedness; stochastic maximal regularity; MARTINGALE DIFFERENCE-SEQUENCES; FOURIER MULTIPLIER THEOREMS; L-P-REGULARITY; EVOLUTION EQUATIONS; MALLIAVIN CALCULUS; VALUED PROCESSES; FORMULA; COVARIATION; SPDES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a brief survey of the theory of stochastic integration in Banach spaces. Expositions of the stochastic integrals in martingale type 2 spaces and UMD spaces are presented, as well as some applications of the latter to vector-valued Malliavin calculus and the stochastic maximal regularity problem. A new proof of the stochastic maximal regularity theorem is included.
引用
收藏
页码:297 / 332
页数:36
相关论文
共 50 条
[21]   On Decoupling in Banach Spaces [J].
Cox, Sonja ;
Geiss, Stefan .
JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (03) :1179-1212
[22]   On Decoupling in Banach Spaces [J].
Sonja Cox ;
Stefan Geiss .
Journal of Theoretical Probability, 2021, 34 :1179-1212
[23]   Cylindrical fractional Brownian motion in Banach spaces [J].
Issoglio, E. ;
Riedle, M. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (11) :3507-3534
[24]   Tools for Malliavin Calculus in UMD Banach Spaces [J].
Matthijs Pronk ;
Mark Veraar .
Potential Analysis, 2014, 40 :307-344
[25]   Tools for Malliavin Calculus in UMD Banach Spaces [J].
Pronk, Matthijs ;
Veraar, Mark .
POTENTIAL ANALYSIS, 2014, 40 (04) :307-344
[26]   Euclidean Structures and Operator Theory in Banach Spaces [J].
Kalton, Nigel J. ;
Lorist, Emiel ;
Weis, Lutz .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 288 (1433) :1-160
[27]   Stochastic evolution equations in Banach spaces and applications to the Heath-Jarrow-Morton-Musiela equations [J].
Brzezniak, Zdzislaw ;
Kok, Tayfun .
FINANCE AND STOCHASTICS, 2018, 22 (04) :959-1006
[28]   Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces [J].
Kunze, Markus C. .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2013, 85 (06) :960-986
[29]   A Clark-Ocone formula in UMD Banach spaces [J].
Maas, Jan ;
Van Neerven, Jan .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 :151-164
[30]   Stochastic integration in Hilbert spaces with respect to cylindrical martingale-valued measures [J].
Alvarado-Solano, Anddy E. ;
Fonseca-Mora, Christian A. .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (02) :1267-1295