Optimal Order Error Estimates for Discontinuous Galerkin Methods for the Wave Equation
被引:15
|
作者:
Han, Weimin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Univ Iowa, Dept Math, Iowa City, IA 52242 USA
Univ Iowa, Program Appl Math & Computat Sci, Iowa City, IA 52242 USAXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Han, Weimin
[1
,2
,3
]
He, Limin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Inner Mongolia Univ Sci & Technol, Sch Sci, Baotou 014010, Inner Mongolia, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
He, Limin
[1
,4
]
Wang, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Wang, Fei
[1
]
机构:
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Univ Iowa, Program Appl Math & Computat Sci, Iowa City, IA 52242 USA
[4] Inner Mongolia Univ Sci & Technol, Sch Sci, Baotou 014010, Inner Mongolia, Peoples R China
In this paper, we derive optimal order error estimates for spatially semi-discrete and fully discrete schemes to numerically solve the second-order wave equation. The numerical schemes are constructed with the discontinuous Galerkin (DG) discretization for the spatial variable and the centered second-order finite difference approximation for the temporal variable. Under appropriate regularity assumptions on the solution, the schemes are shown to enjoy the optimal order error bounds in terms of both the spatial mesh-size and the time-step. In Grote and Schotzau (J Sci Comput 40:257-272, 2009), a fully discrete DG scheme is studied with an explicit finite difference temporal discretization where a CFL condition is required on the mesh-size and the time-step, and optimal order error estimates are derived in the L2()-norm. In comparison, for our fully discrete DG schemes, we do not require a CFL condition on the mesh-size and the time-step, and our optimal order error estimates are derived for the H1()-like norm and the L2() norm. Numerical simulation results are reported to illustrate theoretically predicted convergence orders in the H1() and L2() norms.
机构:
Univ New Mexico, Dept Math & Stat, 1 Univ New Mexico,MSC01 1115, Albuquerque, NM, MexicoUniv New Mexico, Dept Math & Stat, 1 Univ New Mexico,MSC01 1115, Albuquerque, NM, Mexico
Beznosov, Oleksii
Appelo, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Appl Math, Univ Colorado 526 UCB, Boulder, CO 80309 USAUniv New Mexico, Dept Math & Stat, 1 Univ New Mexico,MSC01 1115, Albuquerque, NM, Mexico
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Wang, Fei
Shah, Sheheryar
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Shah, Sheheryar
Xiao, Wenqiang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
机构:
Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh 11623, Saudi ArabiaAl Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh 11623, Saudi Arabia