Digital gene expression approach over multiple RNA-Seq data sets to detect neoblast transcriptional changes in Schmidtea mediterranea

被引:15
|
作者
Rodriguez-Esteban, Gustavo
Gonzalez-Sastre, Alejandro
Ignacio Rojo-Laguna, Jose
Salo, Emili [1 ]
Abril, Josep F.
机构
[1] Univ Barcelona, Fac Biol, Dept Genet, E-08028 Barcelona, Catalonia, Spain
来源
BMC GENOMICS | 2015年 / 16卷
关键词
Planaria; Neoblast; Stem cell; Transcriptome; Transcription factor; STEM-CELLS; PLANARIAN REGENERATION; PHOTORECEPTOR CELL; BLASTEMA POLARITY; NERVOUS-SYSTEM; NF-Y; MAINTENANCE; LONGSAGE; COMPLEX; BINDING;
D O I
10.1186/s12864-015-1533-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The freshwater planarian Schmidtea mediterranea is recognised as a valuable model for research into adult stem cells and regeneration. With the advent of the high-throughput sequencing technologies, it has become feasible to undertake detailed transcriptional analysis of its unique stem cell population, the neoblasts. Nonetheless, a reliable reference for this type of studies is still lacking. Results: Taking advantage of digital gene expression (DGE) sequencing technology we compare all the available transcriptomes for S. mediterranea and improve their annotation. These results are accessible via web for the community of researchers. Using the quantitative nature of DGE, we describe the transcriptional profile of neoblasts and present 42 new neoblast genes, including several cancer-related genes and transcription factors. Furthermore, we describe in detail the Smed-meis-like gene and the three Nuclear Factor Y subunits Smed-nf-YA, Smed-nf-YB-2 and Smed-nf-YC. Conclusions: DGE is a valuable tool for gene discovery, quantification and annotation. The application of DGE in S. mediterranea confirms the planarian stem cells or neoblasts as a complex population of pluripotent and multipotent cells regulated by a mixture of transcription factors and cancer-related genes.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Digital gene expression approach over multiple RNA-Seq data sets to detect neoblast transcriptional changes in Schmidtea mediterranea
    Gustavo Rodríguez-Esteban
    Alejandro González-Sastre
    José Ignacio Rojo-Laguna
    Emili Saló
    Josep F Abril
    BMC Genomics, 16
  • [2] On Differential Gene Expression Using RNA-Seq Data
    Lee, Juhee
    Ji, Yuan
    Liang, Shoudan
    Cai, Guoshuai
    Mueller, Peter
    CANCER INFORMATICS, 2011, 10 : 205 - 215
  • [3] Deep Learning to Analyze RNA-Seq Gene Expression Data
    Urda, D.
    Montes-Torres, J.
    Moreno, F.
    Franco, L.
    Jerez, J. M.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 50 - 59
  • [4] Analyzing RNA-Seq Gene Expression Data for Cancer Classification Through ML Approach
    Wahid, Abdul
    Banday, M. Tariq
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 798 - 810
  • [5] Comparison between RNA-Seq and Affymetrix gene expression data
    Fumagalli, D.
    Haibe-Kains, B.
    Michiels, S.
    Brown, D. N.
    Gacquer, D.
    Majjaj, S.
    Salgado, R.
    Larsimont, D.
    Detour, V.
    Piccart, M.
    Sotiriou, C.
    Desmedt, C.
    CANCER RESEARCH, 2012, 72
  • [6] Detecting Sources of Transcriptional Heterogeneity in Large-Scale RNA-Seq Data Sets
    Searle, Brian C.
    Gittelman, Rachel M.
    Manor, Ohad
    Akey, Joshua M.
    GENETICS, 2016, 204 (04) : 1391 - +
  • [7] DEB: A web interface for RNA-seq digital gene expression analysis
    Yao, Ji Qiang
    Yu, Fahong
    BIOINFORMATION, 2011, 7 (01) : 44 - 45
  • [8] A novel statistical methodology to detect gene fusions in RNA-Seq data.
    Hsieh, Gillian
    Szabo, Linda
    Salzman, Julia
    JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (15)
  • [9] Identifying stably expressed genes from multiple RNA-Seq data sets
    Zhu, Bin
    Emerson, Sarah
    Chang, Jeff H.
    Di, Yanming
    PEERJ, 2016, 4
  • [10] Increased comparability between RNA-Seq and microarray data by utilization of gene sets
    van der Kloet, Frans M.
    Buurmans, Jeroen
    Jonker, Martijs J.
    Smilde, Age K.
    Westerhuis, Johan A.
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)