A distributed approximation algorithm for the minimum degree minimum weight spanning trees

被引:6
作者
Lavault, Christian [1 ]
Valencia-Pabon, Mario [1 ]
机构
[1] Univ Paris 13, LIPN, CNRS, UMR 7030, F-93430 Villetaneuse, France
关键词
distributed algorithms; approximation algorithms; minimum degree minimum weight spanning trees;
D O I
10.1016/j.jpdc.2007.07.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Fischer proposes in [T. Fischer, Optimizing the degree of minimum weight spanning trees, Technical Report 93-1338, Department of Computer Science, Cornell University, Ithaca, NY, USA, 1993] a sequential algorithm to compute a minimum weight spanning tree of maximum degree at most h Delta* + [log(h) n] in time O (n(4+1/In) (h)) for any constant h > 1, where Delta* is the maximum degree value of an optimal solution and n is the number of nodes in the network. In the present paper, we propose a distributed version of Fischer's sequential algorithm with time complexity O (Delta(2+1)(n)/(In) (h)). requiring O (n(3+1/In h)) messages and O(n) space per node, where Delta is the maximum degree of an initial minimum weight spanning tree. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 208
页数:9
相关论文
共 9 条
[1]  
Awerbuch B., 1987, P 19 ANN ACM S THEOR, P230, DOI DOI 10.1145/28395.28421.URL
[2]   The first approximated distributed algorithm for the Minimum Degree Spanning Tree problem on general graphs [J].
Blin, L ;
Butelle, F .
INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2004, 15 (03) :507-516
[3]  
Chaudhuri K, 2005, LECT NOTES COMPUT SC, V3624, P26
[4]  
FISCHER T, 1993, 931338 CORN U DEP CO
[5]   APPROXIMATING THE MINIMUM-DEGREE STEINER TREE TO WITHIN ONE OF OPTIMAL [J].
FURER, M ;
RAGHAVACHARI, B .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1994, 17 (03) :409-423
[6]  
GALLAGER RG, 1983, ACM T PROGR LANG SYS, V5, P67
[7]  
Garey MR, 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[8]  
Neumann F., 2005, EL C COMP COMPL
[9]  
TEL G, 1994, INTRO DISTR ALG