Large Negative Thermal Expansion and Anomalous Behavior on Compression in Cubic ReO3-Type AIIBIVF6: CaZrF6 and CaHfF6

被引:97
作者
Hancock, Justin C. [1 ]
Chapman, Karena W. [2 ]
Halder, Gregory J. [2 ]
Morelock, Cody R. [1 ]
Karlan, Benjamin S. [1 ]
Gallington, Leighanne C. [1 ]
Bongiorno, Angelo [1 ,3 ]
Han, Chu [1 ]
Zhou, Si [3 ]
Wilkinson, Angus P. [1 ,4 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[2] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Lemont, IL 60439 USA
[3] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
PHASE-TRANSITIONS; FLUORIDES;
D O I
10.1021/acs.chemmater.5b00662
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CaZrF6 and CaHfF6 display much stronger negative thermal expansion (NTE) (alpha(L100 K) similar to -18 and -22 ppm K-1, respectively) than ZrW2O8 and other corner-shared framework structures. Their NTE is comparable to that reported for framework solids containing multiatom bridges, such as metal cyanides and metal-organic frameworks. However, they are formable as ceramics, transparent over a wide wavelength range and can be handled in air; these characteristics can be beneficial for applications. The NTE of CaZrF6 is strongly temperature-dependent, and first-principles calculations show that it is largely driven by vibrational modes below similar to 150 cm(-1). CaZrF6 is elastically soft with a bulk modulus (K-300K) of 37 GPa and, upon compression, starts to disorder at similar to 400 MPa. The strong NTE of CaZrF6, which remains cubic to <10 K, contrasts with cubic CoZrF6, which only displays modest NTE above its rhombohedral to cubic phase transition at similar to 270 K. CaZrF6 and CaHfF6 belong to a large and compositionally diverse family of materials, A(II)B(IV)F(6), providing for a detailed exploration of the chemical and structural factors controlling NTE and many opportunities for the design of controlled thermal expansion materials.
引用
收藏
页码:3912 / 3918
页数:7
相关论文
共 48 条
[1]   Lanthanides in non-oxide glasses [J].
Adam, JL .
CHEMICAL REVIEWS, 2002, 102 (06) :2461-2476
[2]   EosFit7c and a Fortran module (library) for equation of state calculations [J].
Angel, Ross J. ;
Gonzalez-Platas, Javier ;
Alvaro, Matteo .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2014, 229 (05) :405-419
[3]   Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer [J].
Azuma, Masaki ;
Chen, Wei-tin ;
Seki, Hayato ;
Czapski, Michal ;
Olga, Smirnova ;
Oka, Kengo ;
Mizumaki, Masaichiro ;
Watanuki, Tetsu ;
Ishimatsu, Naoki ;
Kawamura, Naomi ;
Ishiwata, Shintaro ;
Tucker, Matthew G. ;
Shimakawa, Yuichi ;
Attfield, J. Paul .
NATURE COMMUNICATIONS, 2011, 2
[4]  
Babel D., 1985, INORGANIC SOLID FLUO, P78
[5]   Negative thermal expansion [J].
Barrera, GD ;
Bruno, JAO ;
Barron, THK ;
Allan, NL .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (04) :R217-R252
[6]  
BIRCH F, 1986, J GEOPHYS RES-SOLID, V91, P4949, DOI 10.1029/JB091iB05p04949
[7]   Local Vibrations and Negative Thermal Expansion in ZrW2O8 [J].
Bridges, F. ;
Keiber, T. ;
Juhas, P. ;
Billinge, S. J. L. ;
Sutton, L. ;
Wilde, J. ;
Kowach, Glen R. .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[8]   Pressure enhancement of negative thermal expansion behavior and induced framework softening in zinc cyanide [J].
Chapman, Karena W. ;
Chupas, Peter J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (33) :10090-+
[9]   Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2:: An atomic pair distribution function analysis [J].
Chapman, KW ;
Chupas, PJ ;
Kepert, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (44) :15630-15636
[10]   Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)2 and Zn(CN)2 [J].
Ding, Pei ;
Liang, E. J. ;
Jia, Yu ;
Du, Z. Y. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (27)