Nanoporous Elements in Microfluidics for Multiscale Manipulation of Bioparticles

被引:67
|
作者
Chen, Grace D. [1 ]
Fachin, Fabio [2 ]
Fernandez-Suarez, Marta [1 ]
Wardle, Brian L. [2 ]
Toner, Mehmet [1 ]
机构
[1] Massachusetts Gen Hosp, BioMEMS Resource Ctr, Charlestown, MA 02139 USA
[2] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
关键词
CARBON NANOTUBES; PARTICLE SEPARATION; CHIP; MICROCHIP; MEMBRANES; DEVICE; CELLS; FLOW; ELECTROPHORESIS; FLUORESCENCE;
D O I
10.1002/smll.201002076
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid materials, such as silicon, glass, and polymers, dominate as structural elements in microsystems including microfluidics. Porous elements have been limited to membranes sandwiched between microchannel layers or polymer monoliths. This paper reports the use of micropatterned carbon-nanotube forests confined inside microfluidic channels for mechanically and/or chemically capturing particles ranging over three orders of magnitude in size. Nanoparticles below the internanotube spacing (80 nm) of the forest can penetrate inside the forest and interact with the large surface area created by individual nanotubes. For larger particles (> 80 nm), the ultrahigh porosity of the nanotube elements reduces the fluid boundary layer and enhances particle-structure interactions on the outer surface of the patterned nanoporous elements. Specific biomolecular recognition is demonstrated using cells (approximate to 10 mu m), bacteria (approximate to 1 mu m), and viral-sized particles (approximate to 40 nm) using both effects. This technology can provide unprecedented control of bioseparation processes to access bioparticles of interest, opening new pathways for both research and point-of-care diagnostics.
引用
收藏
页码:1061 / 1067
页数:7
相关论文
共 50 条
  • [31] Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation
    Paiva, Joana S.
    Jorge, Pedro A. S.
    Rosa, Carla C.
    Cunha, Joao P. S.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2018, 1862 (05): : 1209 - 1246
  • [32] Droplet manipulation using saw actuation for integrated microfluidics
    Renaudin, A
    Zang, V
    Tabourier, P
    Camart, JC
    Druon, C
    Micro Total Analysis Systems 2004, Vol 1, 2005, (296): : 551 - 553
  • [33] Lipid Nanovesicles by Microfluidics: Manipulation, Synthesis, and Drug Delivery
    Liu, Chao
    Feng, Qiang
    Sun, Jiashu
    ADVANCED MATERIALS, 2019, 31 (45)
  • [34] Data-Driven Intelligent Manipulation of Particles in Microfluidics
    Fang, Wen-Zhen
    Xiong, Tongzhao
    Pak, On Shun
    Zhu, Lailai
    ADVANCED SCIENCE, 2023, 10 (05)
  • [35] Laser manipulation in liquid crystals: an approach to microfluidics and micromachines
    Gleeson, Helen F.
    Wood, Tiffany A.
    Dickinson, Mark
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1847): : 2789 - 2805
  • [36] Integrated microfluidics for chromosome engineering preparation, transportation and manipulation
    Inoue, T
    Takahashi, K
    Yokoyama, H
    ARCHIVES OF HISTOLOGY AND CYTOLOGY, 2002, 65 (05) : 465 - 471
  • [37] Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers
    Nathalie Nève
    Sean S. Kohles
    Shelley R. Winn
    Derek C. Tretheway
    Cellular and Molecular Bioengineering, 2010, 3 : 213 - 228
  • [38] Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers
    Neve, Nathalie
    Kohles, Sean S.
    Winn, Shelley R.
    Tretheway, Derek C.
    CELLULAR AND MOLECULAR BIOENGINEERING, 2010, 3 (03) : 213 - 228
  • [39] Optical manipulation and microfluidics for studies of single cell dynamics
    Eriksson, E.
    Scrimgeour, J.
    Graneli, A.
    Ramser, K.
    Wellander, R.
    Enger, J.
    Hanstrop, D.
    Goksor, M.
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2007, 9 (08): : S113 - S121
  • [40] Integration of Vertically-Aligned Carbon Nanotube Forests in Microfluidic Devices for Multiscale Isolation of Bioparticles
    Fachin, F.
    Wardle, B. L.
    Chen, G. D.
    Toner, M.
    2010 IEEE SENSORS, 2010, : 47 - 51