Nanoporous Elements in Microfluidics for Multiscale Manipulation of Bioparticles

被引:67
作者
Chen, Grace D. [1 ]
Fachin, Fabio [2 ]
Fernandez-Suarez, Marta [1 ]
Wardle, Brian L. [2 ]
Toner, Mehmet [1 ]
机构
[1] Massachusetts Gen Hosp, BioMEMS Resource Ctr, Charlestown, MA 02139 USA
[2] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
关键词
CARBON NANOTUBES; PARTICLE SEPARATION; CHIP; MICROCHIP; MEMBRANES; DEVICE; CELLS; FLOW; ELECTROPHORESIS; FLUORESCENCE;
D O I
10.1002/smll.201002076
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid materials, such as silicon, glass, and polymers, dominate as structural elements in microsystems including microfluidics. Porous elements have been limited to membranes sandwiched between microchannel layers or polymer monoliths. This paper reports the use of micropatterned carbon-nanotube forests confined inside microfluidic channels for mechanically and/or chemically capturing particles ranging over three orders of magnitude in size. Nanoparticles below the internanotube spacing (80 nm) of the forest can penetrate inside the forest and interact with the large surface area created by individual nanotubes. For larger particles (> 80 nm), the ultrahigh porosity of the nanotube elements reduces the fluid boundary layer and enhances particle-structure interactions on the outer surface of the patterned nanoporous elements. Specific biomolecular recognition is demonstrated using cells (approximate to 10 mu m), bacteria (approximate to 1 mu m), and viral-sized particles (approximate to 40 nm) using both effects. This technology can provide unprecedented control of bioseparation processes to access bioparticles of interest, opening new pathways for both research and point-of-care diagnostics.
引用
收藏
页码:1061 / 1067
页数:7
相关论文
共 43 条
  • [11] Micro total analysis systems. Latest advancements and trends
    Dittrich, Petra S.
    Tachikawa, Kaoru
    Manz, Andreas
    [J]. ANALYTICAL CHEMISTRY, 2006, 78 (12) : 3887 - 3907
  • [12] A microfabricated fluorescence-activated cell sorter
    Fu, AY
    Spence, C
    Scherer, A
    Arnold, FH
    Quake, SR
    [J]. NATURE BIOTECHNOLOGY, 1999, 17 (11) : 1109 - 1111
  • [13] Fabrication of composite microstructures by capillarity-driven wetting of aligned carbon nanotubes with polymers
    Garcia, E. J.
    Hart, A. J.
    Wardle, B. L.
    Slocum, A. H.
    [J]. NANOTECHNOLOGY, 2007, 18 (16)
  • [14] Gascoyne PRC, 2002, ELECTROPHORESIS, V23, P1973, DOI 10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO
  • [15] 2-1
  • [16] Carbon nanotube flow sensors
    Ghosh, S
    Sood, AK
    Kumar, N
    [J]. SCIENCE, 2003, 299 (5609) : 1042 - 1044
  • [17] Magnetic bead handling on-chip: new opportunities for analytical applications
    Gijs, MAM
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2004, 1 (01) : 22 - 40
  • [18] Programmed adsorption and release of proteins in a microfluidic device
    Huber, DL
    Manginell, RP
    Samara, MA
    Kim, BI
    Bunker, BC
    [J]. SCIENCE, 2003, 301 (5631) : 352 - 354
  • [19] Detection of a Single Nucleotide Polymorphism Using Single-Walled Carbon-Nanotube Near-Infrared Fluorescence
    Jeng, Esther S.
    Nelson, John D.
    Prather, Kristala L. J.
    Strano, Michael S.
    [J]. SMALL, 2010, 6 (01) : 40 - 43
  • [20] Chip-NMR biosensor for detection and molecular analysis of cells
    Lee, Hakho
    Sun, Eric
    Ham, Donhee
    Weissleder, Ralph
    [J]. NATURE MEDICINE, 2008, 14 (08) : 869 - 874