Properties of the fractional (exponential) Radon transform

被引:2
作者
Moon, Sunghwan [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Fractional; Fourier transform; Radon transform; exponential Radon transform; tomography; X-ray transform; FOURIER-TRANSFORMS; OPTICAL IMPLEMENTATION;
D O I
10.1080/10652469.2017.1390666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional Radon transform defined, based on the Fourier slice theorem and the fractional Fourier transform, has many potential applications in optics and the pattern-recognition field. Here we study many properties of the fractional Radon transform using existing theory of the regular Radon transform: the inversion formulas, stability estimates, uniqueness and reconstruction for a local data problem, and a range description. Also, we define the fractional exponential Radon transform and present its inversion.
引用
收藏
页码:923 / 939
页数:17
相关论文
共 50 条
  • [41] Fractional Jacobi-Dunkl transform: properties and application
    Haouala, Iness
    Saoudi, Ahmed
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2313 - 2331
  • [42] On locality of Radon to Riesz transform
    Desbat, Laurent
    Perrier, Valerie
    SIGNAL PROCESSING, 2016, 120 : 13 - 25
  • [43] Radon Transform on Sobolev Spaces
    V. A. Sharafutdinov
    Siberian Mathematical Journal, 2021, 62 : 560 - 580
  • [44] Exact reconstruction formulas for a Radon transform over cones
    Haltmeier, Markus
    INVERSE PROBLEMS, 2014, 30 (03)
  • [45] Quick, sensitive serial NMR experiments with Radon transform
    Dass, Rupashree
    Kasprzak, Pawel
    Kazimierczuk, Krzysztof
    JOURNAL OF MAGNETIC RESONANCE, 2017, 282 : 114 - 118
  • [46] The Radon transform for double fibrations of semisimple symmetric spaces
    Satoshi Ishikawa
    Acta Scientiarum Mathematicarum, 2021, 87 : 121 - 162
  • [47] NONUNIQUENESS FOR THE RADON-TRANSFORM
    ARMITAGE, DH
    GOLDSTEIN, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (01) : 175 - 178
  • [48] The Radon transform and translation representation
    Lax P.D.
    Journal of Evolution Equations, 2001, 1 (3) : 311 - 323
  • [49] On a problem of reconstruction of a discontinuous function by its Radon transform
    Derevtsov, Evgeny Yu.
    Maltseva, Svetlana V.
    Svetov, Ivan E.
    Sultanov, Murat A.
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [50] Comments on "Generalised finite Radon transform for NxN images"
    Grigoryan, Artyom M.
    Du, Nan
    IMAGE AND VISION COMPUTING, 2011, 29 (11) : 797 - 801