Gene set analysis of genome-wide association studies: Methodological issues and perspectives

被引:143
作者
Wang, Lily [1 ]
Jia, Peilin [2 ,3 ]
Wolfinger, Russell D. [4 ]
Chen, Xi [1 ]
Zhao, Zhongming [2 ,3 ,5 ]
机构
[1] Vanderbilt Univ, Dept Biostat, Sch Med, Div Canc Biostat, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Biomed Informat, Sch Med, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Dept Psychiat, Sch Med, Nashville, TN 37232 USA
[4] SAS Inst Inc, Cary, NC 27513 USA
[5] Vanderbilt Univ, Dept Canc Biol, Sch Med, Nashville, TN 37232 USA
关键词
Genome-wide association study; Gene set; Pathway; Gene-set enrichment analysis; Statistical significance; Complex disease; PATHWAY ANALYSIS; ENRICHMENT ANALYSIS; STATISTICAL-METHODS; TRUNCATED PRODUCT; FALSE DISCOVERY; DISEASE; SNP; KNOWLEDGE; COMMON; POLYMORPHISMS;
D O I
10.1016/j.ygeno.2011.04.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent studies have demonstrated that gene set analysis, which tests disease association with genetic variants in a group of functionally related genes, is a promising approach for analyzing and interpreting genome-wide association studies (GWAS) data. These approaches aim to increase power by combining association signals from multiple genes in the same gene set. I In addition, gene set analysis can also shed more light on the biological processes underlying complex diseases. However, current approaches for gene set analysis are still in an early stage of development in that analysis results are often prone to sources of bias, including gene set size and gene length, linkage disequilibrium patterns and the presence of overlapping genes. In this paper, we provide an in-depth review of the gene set analysis procedures, along with parameter choices and the particular methodology challenges at each stage. In addition to providing a survey of recently developed tools, we also classify the analysis methods into larger categories and discuss their strengths and limitations. In the last section, we outline several important areas for improving the analytical strategies in gene set analysis. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 94 条
[1]   A general modular framework for gene set enrichment analysis [J].
Ackermann, Marit ;
Strimmer, Korbinian .
BMC BIOINFORMATICS, 2009, 10
[2]   From genes to functional classes in the study of biological systems [J].
Al-Shahrour, Fatima ;
Arbiza, Leonardo ;
Dopazo, Hernan ;
Huerta-Cepas, Jaime ;
Minguez, Pablo ;
Montaner, David ;
Dopazo, Joaquin .
BMC BIOINFORMATICS, 2007, 8 (1)
[3]   Integrating common and rare genetic variation in diverse human populations [J].
Altshuler, David M. ;
Gibbs, Richard A. ;
Peltonen, Leena ;
Dermitzakis, Emmanouil ;
Schaffner, Stephen F. ;
Yu, Fuli ;
Bonnen, Penelope E. ;
de Bakker, Paul I. W. ;
Deloukas, Panos ;
Gabriel, Stacey B. ;
Gwilliam, Rhian ;
Hunt, Sarah ;
Inouye, Michael ;
Jia, Xiaoming ;
Palotie, Aarno ;
Parkin, Melissa ;
Whittaker, Pamela ;
Chang, Kyle ;
Hawes, Alicia ;
Lewis, Lora R. ;
Ren, Yanru ;
Wheeler, David ;
Muzny, Donna Marie ;
Barnes, Chris ;
Darvishi, Katayoon ;
Hurles, Matthew ;
Korn, Joshua M. ;
Kristiansson, Kati ;
Lee, Charles ;
McCarroll, Steven A. ;
Nemesh, James ;
Keinan, Alon ;
Montgomery, Stephen B. ;
Pollack, Samuela ;
Price, Alkes L. ;
Soranzo, Nicole ;
Gonzaga-Jauregui, Claudia ;
Anttila, Verneri ;
Brodeur, Wendy ;
Daly, Mark J. ;
Leslie, Stephen ;
McVean, Gil ;
Moutsianas, Loukas ;
Nguyen, Huy ;
Zhang, Qingrun ;
Ghori, Mohammed J. R. ;
McGinnis, Ralph ;
McLaren, William ;
Takeuchi, Fumihiko ;
Grossman, Sharon R. .
NATURE, 2010, 467 (7311) :52-58
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   Pathways-based analyses of whole-genome association study data in bipolar disorder reveal genes mediating ion channel activity and synaptic neurotransmission [J].
Askland, Kathleen ;
Read, Cynthia ;
Moore, Jason .
HUMAN GENETICS, 2009, 125 (01) :63-79
[6]   Pathway analysis comparison using Crohn's disease genome wide association studies [J].
Ballard, David ;
Abraham, Clara ;
Cho, Judy ;
Zhao, Hongyu .
BMC MEDICAL GENOMICS, 2010, 3
[7]   Comparisons of Multi-Marker Association Methods to Detect Association Between a Candidate Region and Disease [J].
Ballard, David H. ;
Cho, Judy ;
Zhao, Hongyu .
GENETIC EPIDEMIOLOGY, 2010, 34 (03) :201-212
[8]   Pathway and network-based analysis of genome-wide association studies in multiple sclerosis [J].
Baranzini, Sergio E. ;
Galwey, Nicholas W. ;
Wang, Joanne ;
Khankhanian, Pouya ;
Lindberg, Raija ;
Pelletier, Daniel ;
Wu, Wen ;
Uitdehaag, Bernard M. J. ;
Kappos, Ludwig ;
Polman, Chris H. ;
Matthews, Paul M. ;
Hauser, Stephen L. ;
Gibson, Rachel A. ;
Oksenberg, Jorge R. ;
Barnes, Michael R. .
HUMAN MOLECULAR GENETICS, 2009, 18 (11) :2078-2090
[9]   Discovery of complex pathways from observational data [J].
Baurley, James W. ;
Conti, David V. ;
Gauderman, W. James ;
Thomas, Duncan C. .
STATISTICS IN MEDICINE, 2010, 29 (19) :1998-2011
[10]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300