Gene set analysis of genome-wide association studies: Methodological issues and perspectives

被引:143
作者
Wang, Lily [1 ]
Jia, Peilin [2 ,3 ]
Wolfinger, Russell D. [4 ]
Chen, Xi [1 ]
Zhao, Zhongming [2 ,3 ,5 ]
机构
[1] Vanderbilt Univ, Dept Biostat, Sch Med, Div Canc Biostat, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Biomed Informat, Sch Med, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Dept Psychiat, Sch Med, Nashville, TN 37232 USA
[4] SAS Inst Inc, Cary, NC 27513 USA
[5] Vanderbilt Univ, Dept Canc Biol, Sch Med, Nashville, TN 37232 USA
关键词
Genome-wide association study; Gene set; Pathway; Gene-set enrichment analysis; Statistical significance; Complex disease; PATHWAY ANALYSIS; ENRICHMENT ANALYSIS; STATISTICAL-METHODS; TRUNCATED PRODUCT; FALSE DISCOVERY; DISEASE; SNP; KNOWLEDGE; COMMON; POLYMORPHISMS;
D O I
10.1016/j.ygeno.2011.04.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent studies have demonstrated that gene set analysis, which tests disease association with genetic variants in a group of functionally related genes, is a promising approach for analyzing and interpreting genome-wide association studies (GWAS) data. These approaches aim to increase power by combining association signals from multiple genes in the same gene set. I In addition, gene set analysis can also shed more light on the biological processes underlying complex diseases. However, current approaches for gene set analysis are still in an early stage of development in that analysis results are often prone to sources of bias, including gene set size and gene length, linkage disequilibrium patterns and the presence of overlapping genes. In this paper, we provide an in-depth review of the gene set analysis procedures, along with parameter choices and the particular methodology challenges at each stage. In addition to providing a survey of recently developed tools, we also classify the analysis methods into larger categories and discuss their strengths and limitations. In the last section, we outline several important areas for improving the analytical strategies in gene set analysis. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 94 条
  • [1] A general modular framework for gene set enrichment analysis
    Ackermann, Marit
    Strimmer, Korbinian
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [2] From genes to functional classes in the study of biological systems
    Al-Shahrour, Fatima
    Arbiza, Leonardo
    Dopazo, Hernan
    Huerta-Cepas, Jaime
    Minguez, Pablo
    Montaner, David
    Dopazo, Joaquin
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [3] Integrating common and rare genetic variation in diverse human populations
    Altshuler, David M.
    Gibbs, Richard A.
    Peltonen, Leena
    Dermitzakis, Emmanouil
    Schaffner, Stephen F.
    Yu, Fuli
    Bonnen, Penelope E.
    de Bakker, Paul I. W.
    Deloukas, Panos
    Gabriel, Stacey B.
    Gwilliam, Rhian
    Hunt, Sarah
    Inouye, Michael
    Jia, Xiaoming
    Palotie, Aarno
    Parkin, Melissa
    Whittaker, Pamela
    Chang, Kyle
    Hawes, Alicia
    Lewis, Lora R.
    Ren, Yanru
    Wheeler, David
    Muzny, Donna Marie
    Barnes, Chris
    Darvishi, Katayoon
    Hurles, Matthew
    Korn, Joshua M.
    Kristiansson, Kati
    Lee, Charles
    McCarroll, Steven A.
    Nemesh, James
    Keinan, Alon
    Montgomery, Stephen B.
    Pollack, Samuela
    Price, Alkes L.
    Soranzo, Nicole
    Gonzaga-Jauregui, Claudia
    Anttila, Verneri
    Brodeur, Wendy
    Daly, Mark J.
    Leslie, Stephen
    McVean, Gil
    Moutsianas, Loukas
    Nguyen, Huy
    Zhang, Qingrun
    Ghori, Mohammed J. R.
    McGinnis, Ralph
    McLaren, William
    Takeuchi, Fumihiko
    Grossman, Sharon R.
    [J]. NATURE, 2010, 467 (7311) : 52 - 58
  • [4] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [5] Pathways-based analyses of whole-genome association study data in bipolar disorder reveal genes mediating ion channel activity and synaptic neurotransmission
    Askland, Kathleen
    Read, Cynthia
    Moore, Jason
    [J]. HUMAN GENETICS, 2009, 125 (01) : 63 - 79
  • [6] Pathway analysis comparison using Crohn's disease genome wide association studies
    Ballard, David
    Abraham, Clara
    Cho, Judy
    Zhao, Hongyu
    [J]. BMC MEDICAL GENOMICS, 2010, 3
  • [7] Comparisons of Multi-Marker Association Methods to Detect Association Between a Candidate Region and Disease
    Ballard, David H.
    Cho, Judy
    Zhao, Hongyu
    [J]. GENETIC EPIDEMIOLOGY, 2010, 34 (03) : 201 - 212
  • [8] Pathway and network-based analysis of genome-wide association studies in multiple sclerosis
    Baranzini, Sergio E.
    Galwey, Nicholas W.
    Wang, Joanne
    Khankhanian, Pouya
    Lindberg, Raija
    Pelletier, Daniel
    Wu, Wen
    Uitdehaag, Bernard M. J.
    Kappos, Ludwig
    Polman, Chris H.
    Matthews, Paul M.
    Hauser, Stephen L.
    Gibson, Rachel A.
    Oksenberg, Jorge R.
    Barnes, Michael R.
    [J]. HUMAN MOLECULAR GENETICS, 2009, 18 (11) : 2078 - 2090
  • [9] Discovery of complex pathways from observational data
    Baurley, James W.
    Conti, David V.
    Gauderman, W. James
    Thomas, Duncan C.
    [J]. STATISTICS IN MEDICINE, 2010, 29 (19) : 1998 - 2011
  • [10] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300