Advanced In Situ Induced Dual-Mechanism Heterointerface Towards Ultrastable Aqueous Rocking-Chair Zinc-Ion Batteries

被引:88
作者
Cai, Peng [1 ,2 ]
Wang, Kangli [1 ,2 ]
Ning, Jing [2 ]
He, Xin [1 ]
Chen, Manlin [2 ]
Li, Qixing [2 ]
Li, Haomiao [1 ]
Zhou, Min [1 ]
Wang, Wei [2 ]
Jiang, Kai [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
built-in electric fields; dual-mechanism anodes; heterointerfaces; in situ inductions; rocking-chair zinc-ion batteries; STORAGE; INTERCALATION; ANODE; PERFORMANCE; MORPHOLOGY; INTERFACE; GRAPHENE; LITHIUM;
D O I
10.1002/aenm.202202182
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The practical application of infancy-stage rocking-chair Zn-ion batteries is predominately retarded by the strong electrostatic interaction between traditional anode materials with bivalent Zn2+, resulting in irreversible serious structural damage, unsatisfactory cycling stabilities, and poor rate performances. Herein, an advanced dual electric field in situ induced intercalation/conversion dual-mechanism Na1.6TiS2/CuSe2 heterointerface anode towards ultrastable aqueous rocking-chair zinc-ion batteries is successfully constructed. The rational constructions of huge heterointerfaces between different phases generate built-in electric fields, reducing the energy barrier for ion migration, facilitating electron/ion diffusion, decreasing charge transfer resistances, and establishing an excellent conducting network. The enhanced interactions of different atoms at the phase interface alleviate the tensile strain and stabilize the lattice, achieving superior Zn2+ diffusion kinetics. The dual-mechanism Na1.6TiS2/CuSe2 heterostructures can reach a discharge capacity of 142 mAh g(-1) at 0.2 A g(-1). It still reaches a discharge capacity of 133 mAh g(-1) when the current density recovers to 0.2 A g(-1) after a high current evaluation of 10 A g(-1) with remarkable capacity retention (83.8% at 5A g(-1) after 12 000 cycles). This breakthrough opens a new avenue for the targeted design of rocking-chair zinc-ion batteries and provides insights into the evolution of heterointerfaces.
引用
收藏
页数:15
相关论文
共 65 条
[1]   Advanced Pre-Diagnosis Method of Biomass Intermediates Toward High Energy Dual-Carbon Potassium-Ion Capacitor [J].
Cai, Peng ;
Momen, Roya ;
Tian, Ye ;
Yang, Liwen ;
Zou, Kangyu ;
Massoudi, Abouzar ;
Deng, Wentao ;
Hou, Hongshuai ;
Zou, Guoqiang ;
Ji, Xiaobo .
ADVANCED ENERGY MATERIALS, 2022, 12 (05)
[2]   Functional carbon materials processed by NH3 plasma for advanced full-carbon sodium-ion capacitors [J].
Cai, Peng ;
Momen, Roya ;
Li, Mengyu ;
Tian, Ye ;
Yang, Liwen ;
Zou, Kangyu ;
Deng, Xinglan ;
Wang, Baowei ;
Hou, Hongshuai ;
Zou, Guoqiang ;
Ji, Xiaobo .
CHEMICAL ENGINEERING JOURNAL, 2021, 420
[3]   Defect Rich Hierarchical Porous Carbon for High Power Supercapacitors [J].
Cai, Peng ;
Zou, Kangyu ;
Deng, Xinglan ;
Wang, Baowei ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
FRONTIERS IN CHEMISTRY, 2020, 8
[4]   Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance [J].
Cai, Peng ;
Zou, Kangyu ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
NANOSCALE, 2020, 12 (06) :3677-3685
[5]   Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries [J].
Cao, Jin ;
Zhang, Dongdong ;
Yue, Yilei ;
Wang, Xiao ;
Srikhaow, Assadawoot ;
Sriprachuabwong, Chakrit ;
Tuantranont, Adisorn ;
Zhang, Xinyu ;
Wu, Zhong-Shuai ;
Qin, Jiaqian .
CHEMICAL ENGINEERING JOURNAL, 2021, 426
[6]   Heterointerface Engineering of Hierarchical Bi2S3/MoS2 with Self-Generated Rich Phase Boundaries for Superior Sodium Storage Performance [J].
Cao, Liang ;
Liang, Xinghui ;
Ou, Xing ;
Yang, Xianfeng ;
Li, Yangzhong ;
Yang, Chenghao ;
Lin, Zhang ;
Liu, Meilin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (16)
[7]   Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery [J].
Cao, Ziyi ;
Zhu, Xiaodong ;
Xu, Dongxiao ;
Dong, Pei ;
Chee, Mason Oliver Lam ;
Li, Xinjie ;
Zhu, Keyu ;
Ye, Mingxin ;
Shen, Jianfeng .
ENERGY STORAGE MATERIALS, 2021, 36 :132-138
[8]   Prototype System of Rocking-Chair Zn-Ion Battery Adopting Zinc Chevrel Phase Anode and Rhombohedral Zinc Hexacyanoferrate Cathode [J].
Chae, Munseok S. ;
Hong, Seung-Tae .
BATTERIES-BASEL, 2019, 5 (01)
[9]   Electrochemical Zinc-Ion Intercalation Properties and Crystal Structures of ZnMo6S8 and Zn2Mo6S8 Chevrel Phases in Aqueous Electrolytes [J].
Chae, Munseok S. ;
Heo, Jongwook W. ;
Lim, Sung-Chul ;
Hong, Seung-Tae .
INORGANIC CHEMISTRY, 2016, 55 (07) :3294-3301
[10]   Pseudo-Bonding and Electric-Field Harmony for Li-Rich Mn-Based Oxide Cathode [J].
Chen, Jun ;
Zou, Guoqiang ;
Deng, Wentao ;
Huang, Zhaodong ;
Gao, Xu ;
Liu, Cheng ;
Yin, Shouyi ;
Liu, Huanqing ;
Deng, Xinglan ;
Tian, Ye ;
Li, Jiayang ;
Wang, Chiwei ;
Wang, Di ;
Wu, Hanwen ;
Yang, Li ;
Hou, Hongshuai ;
Ji, Xiaobo .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (46)