Global existence and decay of solutions of a singular nonlocal viscoelastic system with a nonlinear source term, nonlocal boundary condition, and localized damping term

被引:12
作者
Boulaaras, Salah [1 ,2 ]
Mezouar, Nadia [3 ]
机构
[1] Qassim Univ, Dept Math, Coll Sci & Arts, Al Rass, Saudi Arabia
[2] Univ Oran, Lab Fundamental & Appl Math Oran LMFAO, Oran, Algeria
[3] Mustapha Stambouli Univ, Fac Econ, Mascara, Algeria
关键词
damping terms; general decay; global existence; viscoelastic equations; BLOW-UP; EQUATION;
D O I
10.1002/mma.6361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the existence of a global solution of a singular one-dimensional viscoelastic system with a nonlinear source term, nonlocal boundary condition, and localized frictional damping a(x)u(t) using the potential well theory. Furthermore, the general decay result is proved. We construct a suitable Lyapunov functional and make use of the perturbed energy method.
引用
收藏
页码:6140 / 6164
页数:25
相关论文
共 50 条
[21]   Global existence and boundedness in a chemotaxis model with singular sensitivity and nonlocal term [J].
Du, Wenping ;
Liu, Suying ;
Zhang, Wenji .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05)
[22]   GLOBAL EXISTENCE, BLOW-UP AND OPTIMAL DECAY FOR A NONLINEAR VISCOELASTIC EQUATION WITH NONLINEAR DAMPING AND SOURCE TERM [J].
Zhang, Zaiyun ;
Ouyang, Qiancheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (09) :4735-4760
[23]   Global Existence and Stability for a Viscoelastic Wave Equation with Nonlinear Boundary Source Term [J].
Mohamed, Mellah ;
Ali, Hakem ;
Gongwei, Liu .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (04) :467-481
[24]   Global existence and blow-up for the degenerate and singular nonlinear parabolic system with a nonlocal source [J].
Peng, Congming ;
Yang, Zuodong ;
Xie, Baoli .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2474-2487
[25]   Global existence of solutions of initial boundary value problem for nonlocal parabolic equation with nonlocal boundary condition [J].
Gladkov, Alexander ;
Kavitova, Tatiana .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) :5464-5479
[26]   Global existence and decay for a system of two singular one-dimensional nonlinear viscoelastic equations with general source terms [J].
Boulaaras, Salah ;
Guefaifia, Rafik ;
Mezouar, Nadia .
APPLICABLE ANALYSIS, 2022, 101 (03) :824-848
[27]   Global existence and general decay for a weak viscoelastic equation with acoustic boundary conditions and a logarithmic source term [J].
Tahamtani, Faramarz ;
Shahrouzi, Mohammad ;
Ferreira, Jorge .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05)
[28]   General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term [J].
Hajjej, Zayd .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03)
[29]   ELASTIC MEMBRANE EQUATION WITH MEMORY TERM AND NONLINEAR BOUNDARY DAMPING: GLOBAL EXISTENCE, DECAY AND BLOWUP OF THE SOLUTION [J].
Zarai, Abderrahmane ;
Tatar, Nasser-eddine ;
Abdelmalek, Salem .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (01) :84-106
[30]   ELASTIC MEMBRANE EQUATION WITH MEMORY TERM AND NONLINEAR BOUNDARY DAMPING:GLOBAL EXISTENCE,DECAY AND BLOWUP OF THE SOLUTION [J].
Abderrahmane ZARA ;
Nassereddine TATAR ;
Salem ABDELMALEK .
Acta Mathematica Scientia, 2013, 33 (01) :84-106