Global existence and decay of solutions of a singular nonlocal viscoelastic system with a nonlinear source term, nonlocal boundary condition, and localized damping term

被引:13
作者
Boulaaras, Salah [1 ,2 ]
Mezouar, Nadia [3 ]
机构
[1] Qassim Univ, Dept Math, Coll Sci & Arts, Al Rass, Saudi Arabia
[2] Univ Oran, Lab Fundamental & Appl Math Oran LMFAO, Oran, Algeria
[3] Mustapha Stambouli Univ, Fac Econ, Mascara, Algeria
关键词
damping terms; general decay; global existence; viscoelastic equations; BLOW-UP; EQUATION;
D O I
10.1002/mma.6361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the existence of a global solution of a singular one-dimensional viscoelastic system with a nonlinear source term, nonlocal boundary condition, and localized frictional damping a(x)u(t) using the potential well theory. Furthermore, the general decay result is proved. We construct a suitable Lyapunov functional and make use of the perturbed energy method.
引用
收藏
页码:6140 / 6164
页数:25
相关论文
共 50 条
  • [21] Global existence and boundedness in a chemotaxis model with singular sensitivity and nonlocal term
    Du, Wenping
    Liu, Suying
    Zhang, Wenji
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [22] GLOBAL EXISTENCE, BLOW-UP AND OPTIMAL DECAY FOR A NONLINEAR VISCOELASTIC EQUATION WITH NONLINEAR DAMPING AND SOURCE TERM
    Zhang, Zaiyun
    Ouyang, Qiancheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (09): : 4735 - 4760
  • [23] Global Existence and Stability for a Viscoelastic Wave Equation with Nonlinear Boundary Source Term
    Mohamed, Mellah
    Ali, Hakem
    Gongwei, Liu
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (04): : 467 - 481
  • [24] Global existence and blow-up for the degenerate and singular nonlinear parabolic system with a nonlocal source
    Peng, Congming
    Yang, Zuodong
    Xie, Baoli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) : 2474 - 2487
  • [25] Global existence of solutions of initial boundary value problem for nonlocal parabolic equation with nonlocal boundary condition
    Gladkov, Alexander
    Kavitova, Tatiana
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5464 - 5479
  • [26] Global existence and decay for a system of two singular one-dimensional nonlinear viscoelastic equations with general source terms
    Boulaaras, Salah
    Guefaifia, Rafik
    Mezouar, Nadia
    APPLICABLE ANALYSIS, 2022, 101 (03) : 824 - 848
  • [27] Global existence and general decay for a weak viscoelastic equation with acoustic boundary conditions and a logarithmic source term
    Tahamtani, Faramarz
    Shahrouzi, Mohammad
    Ferreira, Jorge
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [28] General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term
    Hajjej, Zayd
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [29] ELASTIC MEMBRANE EQUATION WITH MEMORY TERM AND NONLINEAR BOUNDARY DAMPING: GLOBAL EXISTENCE, DECAY AND BLOWUP OF THE SOLUTION
    Zarai, Abderrahmane
    Tatar, Nasser-eddine
    Abdelmalek, Salem
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (01) : 84 - 106
  • [30] ELASTIC MEMBRANE EQUATION WITH MEMORY TERM AND NONLINEAR BOUNDARY DAMPING:GLOBAL EXISTENCE,DECAY AND BLOWUP OF THE SOLUTION
    Abderrahmane ZARA
    Nasser-eddine TATAR
    Salem ABDELMALEK
    ActaMathematicaScientia, 2013, 33 (01) : 84 - 106